![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elima | Structured version Visualization version GIF version |
Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 19-Apr-2004.) |
Ref | Expression |
---|---|
elima.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elima | ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elima.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elimag 5626 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ (𝐵 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐵𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∈ wcel 2137 ∃wrex 3049 Vcvv 3338 class class class wbr 4802 “ cima 5267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pr 5053 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ral 3053 df-rex 3054 df-rab 3057 df-v 3340 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-sn 4320 df-pr 4322 df-op 4326 df-br 4803 df-opab 4863 df-xp 5270 df-cnv 5272 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 |
This theorem is referenced by: elima2 5628 rninxp 5729 imaco 5799 isarep1 6136 eliman0 6382 funimass4 6407 isomin 6748 dfsup2 8513 dfac10b 9151 hausmapdom 21503 pi1blem 23037 adjbd1o 29251 elintfv 31967 imaindm 31985 scutun12 32221 madeval2 32240 brimage 32337 dfrecs2 32361 dfrdg4 32362 dfint3 32363 imagesset 32364 elimaint 38440 elintima 38445 |
Copyright terms: Public domain | W3C validator |