![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elii1 | Structured version Visualization version GIF version |
Description: Divide the unit interval into two pieces. (Contributed by Mario Carneiro, 7-Jun-2014.) |
Ref | Expression |
---|---|
elii1 | ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10241 | . . . . . 6 ⊢ 0 ∈ ℝ | |
2 | halfre 11447 | . . . . . 6 ⊢ (1 / 2) ∈ ℝ | |
3 | 1, 2 | elicc2i 12443 | . . . . 5 ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ (1 / 2))) |
4 | 3 | simp1bi 1138 | . . . 4 ⊢ (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ∈ ℝ) |
5 | 2 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ (0[,](1 / 2)) → (1 / 2) ∈ ℝ) |
6 | 1re 10240 | . . . . 5 ⊢ 1 ∈ ℝ | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ (0[,](1 / 2)) → 1 ∈ ℝ) |
8 | 3 | simp3bi 1140 | . . . 4 ⊢ (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ≤ (1 / 2)) |
9 | halflt1 11451 | . . . . . 6 ⊢ (1 / 2) < 1 | |
10 | 2, 6, 9 | ltleii 10361 | . . . . 5 ⊢ (1 / 2) ≤ 1 |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ (0[,](1 / 2)) → (1 / 2) ≤ 1) |
12 | 4, 5, 7, 8, 11 | letrd 10395 | . . 3 ⊢ (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ≤ 1) |
13 | 12 | pm4.71ri 542 | . 2 ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2)))) |
14 | ancom 452 | . . 3 ⊢ ((𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2))) ↔ (𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1)) | |
15 | an32 617 | . . . 4 ⊢ ((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)) ∧ 𝑋 ≤ 1) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1) ∧ 𝑋 ≤ (1 / 2))) | |
16 | df-3an 1072 | . . . . . 6 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ (1 / 2)) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2))) | |
17 | 3, 16 | bitri 264 | . . . . 5 ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2))) |
18 | 17 | anbi1i 602 | . . . 4 ⊢ ((𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)) ∧ 𝑋 ≤ 1)) |
19 | 1, 6 | elicc2i 12443 | . . . . . 6 ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
20 | df-3an 1072 | . . . . . 6 ⊢ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1)) | |
21 | 19, 20 | bitri 264 | . . . . 5 ⊢ (𝑋 ∈ (0[,]1) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1)) |
22 | 21 | anbi1i 602 | . . . 4 ⊢ ((𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1) ∧ 𝑋 ≤ (1 / 2))) |
23 | 15, 18, 22 | 3bitr4i 292 | . . 3 ⊢ ((𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2))) |
24 | 14, 23 | bitri 264 | . 2 ⊢ ((𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2))) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2))) |
25 | 13, 24 | bitri 264 | 1 ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 ∧ w3a 1070 ∈ wcel 2144 class class class wbr 4784 (class class class)co 6792 ℝcr 10136 0cc0 10137 1c1 10138 ≤ cle 10276 / cdiv 10885 2c2 11271 [,]cicc 12382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-2 11280 df-icc 12386 |
This theorem is referenced by: phtpycc 23009 pcoval1 23031 copco 23036 pcohtpylem 23037 pcopt 23040 pcopt2 23041 pcorevlem 23044 |
Copyright terms: Public domain | W3C validator |