![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elicod | Structured version Visualization version GIF version |
Description: Membership in a left closed, right open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
elicod.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
elicod.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
elicod.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
elicod.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
elicod.5 | ⊢ (𝜑 → 𝐶 < 𝐵) |
Ref | Expression |
---|---|
elicod | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicod.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
2 | elicod.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
3 | elicod.5 | . 2 ⊢ (𝜑 → 𝐶 < 𝐵) | |
4 | elicod.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
5 | elicod.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
6 | elico1 12407 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) | |
7 | 4, 5, 6 | syl2anc 696 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
8 | 1, 2, 3, 7 | mpbir3and 1428 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,)𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1072 ∈ wcel 2135 class class class wbr 4800 (class class class)co 6809 ℝ*cxr 10261 < clt 10262 ≤ cle 10263 [,)cico 12366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pr 5051 ax-un 7110 ax-cnex 10180 ax-resscn 10181 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ral 3051 df-rex 3052 df-rab 3055 df-v 3338 df-sbc 3573 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4585 df-br 4801 df-opab 4861 df-id 5170 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-iota 6008 df-fun 6047 df-fv 6053 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-xr 10266 df-ico 12370 |
This theorem is referenced by: fprodge1 14921 absfico 39905 icoiccdif 40249 icoopn 40250 eliccnelico 40255 eliccelicod 40256 ge0xrre 40257 uzinico 40286 fsumge0cl 40304 limsupresico 40431 limsuppnfdlem 40432 limsupmnflem 40451 liminfresico 40502 limsup10exlem 40503 liminflelimsupuz 40516 xlimmnfvlem2 40558 icocncflimc 40601 fourierdlem41 40864 fourierdlem46 40868 fourierdlem48 40870 fouriersw 40947 fge0iccico 41086 sge0tsms 41096 sge0repnf 41102 sge0pr 41110 sge0iunmptlemre 41131 sge0rpcpnf 41137 sge0rernmpt 41138 sge0ad2en 41147 sge0xaddlem2 41150 voliunsge0lem 41188 meassre 41193 meaiuninclem 41196 omessre 41226 omeiunltfirp 41235 hoiprodcl 41263 hoicvr 41264 ovnsubaddlem1 41286 hoiprodcl3 41296 hoidmvcl 41298 hoidmv1lelem3 41309 hoidmvlelem3 41313 hoidmvlelem5 41315 hspdifhsp 41332 hoiqssbllem1 41338 hoiqssbllem2 41339 hspmbllem2 41343 volicorege0 41353 ovolval5lem1 41368 iunhoiioolem 41391 preimaicomnf 41424 mod42tp1mod8 42025 |
Copyright terms: Public domain | W3C validator |