MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elico2 Structured version   Visualization version   GIF version

Theorem elico2 12442
Description: Membership in a closed-below, open-above real interval. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elico2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))

Proof of Theorem elico2
StepHypRef Expression
1 rexr 10291 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 elico1 12423 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
31, 2sylan 569 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
4 mnfxr 10302 . . . . . . . 8 -∞ ∈ ℝ*
54a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → -∞ ∈ ℝ*)
61ad2antrr 705 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐴 ∈ ℝ*)
7 simpr1 1233 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐶 ∈ ℝ*)
8 mnflt 12162 . . . . . . . 8 (𝐴 ∈ ℝ → -∞ < 𝐴)
98ad2antrr 705 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → -∞ < 𝐴)
10 simpr2 1235 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐴𝐶)
115, 6, 7, 9, 10xrltletrd 12197 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → -∞ < 𝐶)
12 simplr 752 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐵 ∈ ℝ*)
13 pnfxr 10298 . . . . . . . 8 +∞ ∈ ℝ*
1413a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → +∞ ∈ ℝ*)
15 simpr3 1237 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐶 < 𝐵)
16 pnfge 12169 . . . . . . . 8 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
1716ad2antlr 706 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐵 ≤ +∞)
187, 12, 14, 15, 17xrltletrd 12197 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐶 < +∞)
19 xrrebnd 12204 . . . . . . 7 (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
207, 19syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
2111, 18, 20mpbir2and 692 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐶 ∈ ℝ)
2221, 10, 153jca 1122 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵))
2322ex 397 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
24 rexr 10291 . . . 4 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
25243anim1i 1155 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) → (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵))
2623, 25impbid1 215 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
273, 26bitrd 268 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071  wcel 2145   class class class wbr 4787  (class class class)co 6796  cr 10141  +∞cpnf 10277  -∞cmnf 10278  *cxr 10279   < clt 10280  cle 10281  [,)cico 12382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-pre-lttri 10216  ax-pre-lttrn 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-po 5171  df-so 5172  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-ico 12386
This theorem is referenced by:  icossre  12459  elicopnf  12475  icoshft  12501  modelico  12888  muladdmodid  12918  icodiamlt  14382  fprodge0  14930  fprodge1  14932  rge0srg  20032  metustexhalf  22581  cnbl0  22797  icoopnst  22958  iocopnst  22959  icopnfcnv  22961  icopnfhmeo  22962  iccpnfcnv  22963  psercnlem2  24398  psercnlem1  24399  psercn  24400  abelth  24415  tanord1  24504  tanord  24505  efopnlem1  24623  logtayl  24627  rlimcnp  24913  rlimcnp2  24914  dchrvmasumlem2  25408  dchrvmasumiflem1  25411  pntlemb  25507  pnt  25524  ubico  29877  xrge0slmod  30184  voliune  30632  volfiniune  30633  dya2icoseg  30679  sibfinima  30741  relowlpssretop  33549  tan2h  33734  itg2addnclem2  33794  binomcxplemdvbinom  39078  binomcxplemcvg  39079  binomcxplemnotnn0  39081  limciccioolb  40368  fourierdlem32  40870  fourierdlem43  40881  fourierdlem63  40900  fourierdlem79  40916  fouriersw  40962  expnegico01  42833  dignnld  42922
  Copyright terms: Public domain W3C validator