Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccioo Structured version   Visualization version   GIF version

Theorem eliccioo 29948
Description: Membership in a closed interval of extended reals vs. the same open interval. (Contributed by Thierry Arnoux, 18-Dec-2016.)
Assertion
Ref Expression
eliccioo ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵)))

Proof of Theorem eliccioo
StepHypRef Expression
1 prunioo 12494 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
21eleq2d 2825 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ 𝐶 ∈ (𝐴[,]𝐵)))
32biimpar 503 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}))
4 elun 3896 . . . . . 6 (𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 ∈ {𝐴, 𝐵}))
5 elprg 4341 . . . . . . 7 (𝐶 ∈ (𝐴[,]𝐵) → (𝐶 ∈ {𝐴, 𝐵} ↔ (𝐶 = 𝐴𝐶 = 𝐵)))
65orbi2d 740 . . . . . 6 (𝐶 ∈ (𝐴[,]𝐵) → ((𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 ∈ {𝐴, 𝐵}) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴𝐶 = 𝐵))))
74, 6syl5bb 272 . . . . 5 (𝐶 ∈ (𝐴[,]𝐵) → (𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴𝐶 = 𝐵))))
87adantl 473 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴𝐶 = 𝐵))))
93, 8mpbid 222 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴𝐶 = 𝐵)))
10 3orass 1075 . . . 4 ((𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐴𝐶 = 𝐵) ↔ (𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴𝐶 = 𝐵)))
11 3orcoma 1078 . . . 4 ((𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐴𝐶 = 𝐵) ↔ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵))
1210, 11bitr3i 266 . . 3 ((𝐶 ∈ (𝐴(,)𝐵) ∨ (𝐶 = 𝐴𝐶 = 𝐵)) ↔ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵))
139, 12sylib 208 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵))
14 lbicc2 12481 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
1514adantr 472 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐴) → 𝐴 ∈ (𝐴[,]𝐵))
16 eleq1 2827 . . . . 5 (𝐶 = 𝐴 → (𝐶 ∈ (𝐴[,]𝐵) ↔ 𝐴 ∈ (𝐴[,]𝐵)))
1716adantl 473 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐴) → (𝐶 ∈ (𝐴[,]𝐵) ↔ 𝐴 ∈ (𝐴[,]𝐵)))
1815, 17mpbird 247 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐴) → 𝐶 ∈ (𝐴[,]𝐵))
19 ioossicc 12452 . . . . 5 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2019sseli 3740 . . . 4 (𝐶 ∈ (𝐴(,)𝐵) → 𝐶 ∈ (𝐴[,]𝐵))
2120adantl 473 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
22 ubicc2 12482 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
2322adantr 472 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
24 eleq1 2827 . . . . 5 (𝐶 = 𝐵 → (𝐶 ∈ (𝐴[,]𝐵) ↔ 𝐵 ∈ (𝐴[,]𝐵)))
2524adantl 473 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ 𝐵 ∈ (𝐴[,]𝐵)))
2623, 25mpbird 247 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐶 ∈ (𝐴[,]𝐵))
2718, 21, 263jaodan 1543 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
2813, 27impbida 913 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3o 1071  w3a 1072   = wceq 1632  wcel 2139  cun 3713  {cpr 4323   class class class wbr 4804  (class class class)co 6813  *cxr 10265  cle 10267  (,)cioo 12368  [,]cicc 12371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-q 11982  df-ioo 12372  df-ico 12374  df-icc 12375
This theorem is referenced by:  elxrge02  29949
  Copyright terms: Public domain W3C validator