Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccelico Structured version   Visualization version   GIF version

Theorem eliccelico 29424
Description: Relate elementhood to a closed interval with elementhood to the same closed-below, open-above interval or to its upper bound. (Contributed by Thierry Arnoux, 3-Jul-2017.)
Assertion
Ref Expression
eliccelico ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)))

Proof of Theorem eliccelico
StepHypRef Expression
1 simpl1 1062 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐴 ∈ ℝ*)
2 simpl2 1063 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐵 ∈ ℝ*)
3 simprl 793 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐶 ∈ (𝐴[,]𝐵))
4 elicc1 12177 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
54biimpa 501 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵))
65simp1d 1071 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ*)
71, 2, 3, 6syl21anc 1322 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐶 ∈ ℝ*)
85simp3d 1073 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
91, 2, 3, 8syl21anc 1322 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐶𝐵)
101, 2jca 554 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
11 simprr 795 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → ¬ 𝐶 ∈ (𝐴[,)𝐵))
125simp2d 1072 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
1310, 3, 12syl2anc 692 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐴𝐶)
14 elico1 12176 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
1514notbid 308 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐶 ∈ (𝐴[,)𝐵) ↔ ¬ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
1615biimpa 501 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) → ¬ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵))
17 df-3an 1038 . . . . . . . . . 10 ((𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) ↔ ((𝐶 ∈ ℝ*𝐴𝐶) ∧ 𝐶 < 𝐵))
1817notbii 310 . . . . . . . . 9 (¬ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) ↔ ¬ ((𝐶 ∈ ℝ*𝐴𝐶) ∧ 𝐶 < 𝐵))
19 imnan 438 . . . . . . . . 9 (((𝐶 ∈ ℝ*𝐴𝐶) → ¬ 𝐶 < 𝐵) ↔ ¬ ((𝐶 ∈ ℝ*𝐴𝐶) ∧ 𝐶 < 𝐵))
2018, 19bitr4i 267 . . . . . . . 8 (¬ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) ↔ ((𝐶 ∈ ℝ*𝐴𝐶) → ¬ 𝐶 < 𝐵))
2116, 20sylib 208 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝐶 ∈ ℝ*𝐴𝐶) → ¬ 𝐶 < 𝐵))
2221imp 445 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) ∧ (𝐶 ∈ ℝ*𝐴𝐶)) → ¬ 𝐶 < 𝐵)
2310, 11, 7, 13, 22syl22anc 1324 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → ¬ 𝐶 < 𝐵)
24 xeqlelt 29423 . . . . . 6 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 = 𝐵 ↔ (𝐶𝐵 ∧ ¬ 𝐶 < 𝐵)))
2524biimpar 502 . . . . 5 (((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶𝐵 ∧ ¬ 𝐶 < 𝐵)) → 𝐶 = 𝐵)
267, 2, 9, 23, 25syl22anc 1324 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐶 = 𝐵)
2726ex 450 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 = 𝐵))
28 pm5.6 950 . . 3 (((𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 = 𝐵) ↔ (𝐶 ∈ (𝐴[,]𝐵) → (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)))
2927, 28sylib 208 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐶 ∈ (𝐴[,]𝐵) → (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)))
30 icossicc 12218 . . . . 5 (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)
31 simpr 477 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ (𝐴[,)𝐵))
3230, 31sseldi 3586 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
33 simpr 477 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐶 = 𝐵)
34 simpl2 1063 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐵 ∈ ℝ*)
3533, 34eqeltrd 2698 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐶 ∈ ℝ*)
36 simpl3 1064 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐴𝐵)
3736, 33breqtrrd 4651 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐴𝐶)
38 xrleid 11943 . . . . . . 7 (𝐵 ∈ ℝ*𝐵𝐵)
3934, 38syl 17 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐵𝐵)
4033, 39eqbrtrd 4645 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐶𝐵)
41 simpl1 1062 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐴 ∈ ℝ*)
4241, 34, 4syl2anc 692 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
4335, 37, 40, 42mpbir3and 1243 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐶 ∈ (𝐴[,]𝐵))
4432, 43jaodan 825 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
4544ex 450 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵) → 𝐶 ∈ (𝐴[,]𝐵)))
4629, 45impbid 202 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4623  (class class class)co 6615  *cxr 10033   < clt 10034  cle 10035  [,)cico 12135  [,]cicc 12136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-pre-lttri 9970  ax-pre-lttrn 9971
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-po 5005  df-so 5006  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-ico 12139  df-icc 12140
This theorem is referenced by:  xrge0adddir  29519  esumcvg  29971
  Copyright terms: Public domain W3C validator