![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elicc2i | Structured version Visualization version GIF version |
Description: Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013.) |
Ref | Expression |
---|---|
elicc2i.1 | ⊢ 𝐴 ∈ ℝ |
elicc2i.2 | ⊢ 𝐵 ∈ ℝ |
Ref | Expression |
---|---|
elicc2i | ⊢ (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc2i.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | elicc2i.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | elicc2 12431 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
4 | 1, 2, 3 | mp2an 710 | 1 ⊢ (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ w3a 1072 ∈ wcel 2139 class class class wbr 4804 (class class class)co 6813 ℝcr 10127 ≤ cle 10267 [,]cicc 12371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-pre-lttri 10202 ax-pre-lttrn 10203 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-icc 12375 |
This theorem is referenced by: 0elunit 12483 1elunit 12484 divelunit 12507 lincmb01cmp 12508 iccf1o 12509 sinbnd2 15111 cosbnd2 15112 rpnnen2lem12 15153 blcvx 22802 iirev 22929 iihalf1 22931 iihalf2 22933 elii1 22935 elii2 22936 iimulcl 22937 iccpnfhmeo 22945 xrhmeo 22946 oprpiece1res2 22952 lebnumii 22966 htpycc 22980 pco0 23014 pcoval2 23016 pcocn 23017 pcohtpylem 23019 pcopt 23022 pcopt2 23023 pcoass 23024 pcorevlem 23026 vitalilem2 23577 vitali 23581 abelth2 24395 coseq00topi 24453 coseq0negpitopi 24454 sinq12ge0 24459 cosq14ge0 24462 cosordlem 24476 cosord 24477 cos11 24478 sinord 24479 recosf1o 24480 resinf1o 24481 efif1olem3 24489 argregt0 24555 argrege0 24556 argimgt0 24557 logimul 24559 cxpsqrtlem 24647 chordthmlem4 24761 acosbnd 24826 leibpi 24868 log2ub 24875 jensenlem2 24913 emcllem7 24927 emgt0 24932 harmonicbnd3 24933 harmoniclbnd 24934 harmonicubnd 24935 harmonicbnd4 24936 lgamgulmlem2 24955 logdivbnd 25444 pntpbnd2 25475 ttgcontlem1 25964 brbtwn2 25984 ax5seglem1 26007 ax5seglem2 26008 ax5seglem3 26010 ax5seglem5 26012 ax5seglem6 26013 ax5seglem9 26016 ax5seg 26017 axbtwnid 26018 axpaschlem 26019 axpasch 26020 axcontlem2 26044 axcontlem4 26046 axcontlem7 26049 stge0 29392 stle1 29393 strlem3a 29420 elunitrn 30252 elunitge0 30254 unitdivcld 30256 xrge0iifiso 30290 xrge0iifhom 30292 resconn 31535 snmlff 31618 sin2h 33712 cos2h 33713 poimirlem29 33751 poimirlem30 33752 poimirlem31 33753 poimirlem32 33754 lhe4.4ex1a 39030 fourierdlem40 40867 fourierdlem62 40888 fourierdlem78 40904 fourierdlem111 40937 sqwvfoura 40948 sqwvfourb 40949 |
Copyright terms: Public domain | W3C validator |