MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elgrug Structured version   Visualization version   GIF version

Theorem elgrug 9820
Description: Properties of a Grothendieck universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
elgrug (𝑈𝑉 → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈𝑚 𝑥) ran 𝑦𝑈))))
Distinct variable group:   𝑥,𝑈,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem elgrug
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 treq 4893 . . 3 (𝑢 = 𝑈 → (Tr 𝑢 ↔ Tr 𝑈))
2 eleq2 2839 . . . . 5 (𝑢 = 𝑈 → (𝒫 𝑥𝑢 ↔ 𝒫 𝑥𝑈))
3 eleq2 2839 . . . . . 6 (𝑢 = 𝑈 → ({𝑥, 𝑦} ∈ 𝑢 ↔ {𝑥, 𝑦} ∈ 𝑈))
43raleqbi1dv 3295 . . . . 5 (𝑢 = 𝑈 → (∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ↔ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))
5 oveq1 6803 . . . . . 6 (𝑢 = 𝑈 → (𝑢𝑚 𝑥) = (𝑈𝑚 𝑥))
6 eleq2 2839 . . . . . 6 (𝑢 = 𝑈 → ( ran 𝑦𝑢 ran 𝑦𝑈))
75, 6raleqbidv 3301 . . . . 5 (𝑢 = 𝑈 → (∀𝑦 ∈ (𝑢𝑚 𝑥) ran 𝑦𝑢 ↔ ∀𝑦 ∈ (𝑈𝑚 𝑥) ran 𝑦𝑈))
82, 4, 73anbi123d 1547 . . . 4 (𝑢 = 𝑈 → ((𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢𝑚 𝑥) ran 𝑦𝑢) ↔ (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈𝑚 𝑥) ran 𝑦𝑈)))
98raleqbi1dv 3295 . . 3 (𝑢 = 𝑈 → (∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢𝑚 𝑥) ran 𝑦𝑢) ↔ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈𝑚 𝑥) ran 𝑦𝑈)))
101, 9anbi12d 616 . 2 (𝑢 = 𝑈 → ((Tr 𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢𝑚 𝑥) ran 𝑦𝑢)) ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈𝑚 𝑥) ran 𝑦𝑈))))
11 df-gru 9819 . 2 Univ = {𝑢 ∣ (Tr 𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢𝑚 𝑥) ran 𝑦𝑢))}
1210, 11elab2g 3504 1 (𝑈𝑉 → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥𝑈 (𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈𝑚 𝑥) ran 𝑦𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  𝒫 cpw 4298  {cpr 4319   cuni 4575  Tr wtr 4887  ran crn 5251  (class class class)co 6796  𝑚 cmap 8013  Univcgru 9818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-tr 4888  df-iota 5993  df-fv 6038  df-ov 6799  df-gru 9819
This theorem is referenced by:  grutr  9821  grupw  9823  grupr  9825  gruurn  9826  intgru  9842  ingru  9843  grutsk1  9849
  Copyright terms: Public domain W3C validator