Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elghomlem2OLD Structured version   Visualization version   GIF version

Theorem elghomlem2OLD 33656
Description: Obsolete as of 15-Mar-2020. Lemma for elghomOLD 33657. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
elghomlem1OLD.1 𝑆 = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))}
Assertion
Ref Expression
elghomlem2OLD ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐹   𝑓,𝐺,𝑥,𝑦   𝑓,𝐻,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑓)

Proof of Theorem elghomlem2OLD
StepHypRef Expression
1 elghomlem1OLD.1 . . . 4 𝑆 = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))}
21elghomlem1OLD 33655 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐺 GrpOpHom 𝐻) = 𝑆)
32eleq2d 2685 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ 𝐹𝑆))
4 elex 3207 . . . . 5 (𝐹𝑆𝐹 ∈ V)
5 feq1 6013 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓:ran 𝐺⟶ran 𝐻𝐹:ran 𝐺⟶ran 𝐻))
6 fveq1 6177 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
7 fveq1 6177 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
86, 7oveq12d 6653 . . . . . . . . . 10 (𝑓 = 𝐹 → ((𝑓𝑥)𝐻(𝑓𝑦)) = ((𝐹𝑥)𝐻(𝐹𝑦)))
9 fveq1 6177 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓‘(𝑥𝐺𝑦)) = (𝐹‘(𝑥𝐺𝑦)))
108, 9eqeq12d 2635 . . . . . . . . 9 (𝑓 = 𝐹 → (((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)) ↔ ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))))
11102ralbidv 2986 . . . . . . . 8 (𝑓 = 𝐹 → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)) ↔ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))))
125, 11anbi12d 746 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦))) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
1312, 1elab2g 3347 . . . . . 6 (𝐹 ∈ V → (𝐹𝑆 ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
1413biimpd 219 . . . . 5 (𝐹 ∈ V → (𝐹𝑆 → (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
154, 14mpcom 38 . . . 4 (𝐹𝑆 → (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))))
16 rnexg 7083 . . . . . . 7 (𝐺 ∈ GrpOp → ran 𝐺 ∈ V)
17 fex 6475 . . . . . . . 8 ((𝐹:ran 𝐺⟶ran 𝐻 ∧ ran 𝐺 ∈ V) → 𝐹 ∈ V)
1817expcom 451 . . . . . . 7 (ran 𝐺 ∈ V → (𝐹:ran 𝐺⟶ran 𝐻𝐹 ∈ V))
1916, 18syl 17 . . . . . 6 (𝐺 ∈ GrpOp → (𝐹:ran 𝐺⟶ran 𝐻𝐹 ∈ V))
2019adantrd 484 . . . . 5 (𝐺 ∈ GrpOp → ((𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))) → 𝐹 ∈ V))
2113biimprd 238 . . . . 5 (𝐹 ∈ V → ((𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))) → 𝐹𝑆))
2220, 21syli 39 . . . 4 (𝐺 ∈ GrpOp → ((𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))) → 𝐹𝑆))
2315, 22impbid2 216 . . 3 (𝐺 ∈ GrpOp → (𝐹𝑆 ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
2423adantr 481 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹𝑆 ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
253, 24bitrd 268 1 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1481  wcel 1988  {cab 2606  wral 2909  Vcvv 3195  ran crn 5105  wf 5872  cfv 5876  (class class class)co 6635  GrpOpcgr 27313   GrpOpHom cghomOLD 33653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-ghomOLD 33654
This theorem is referenced by:  elghomOLD  33657
  Copyright terms: Public domain W3C validator