![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzuzb | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integers in terms of sets of upper integers. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzuzb | ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1074 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
2 | an6 1557 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ≤ 𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
3 | df-3an 1074 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ)) | |
4 | anandir 907 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ))) | |
5 | ancom 465 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ↔ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
6 | 5 | anbi2i 732 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))) |
7 | 3, 4, 6 | 3bitri 286 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))) |
8 | 7 | anbi1i 733 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
9 | 1, 2, 8 | 3bitr4ri 293 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ≤ 𝑁))) |
10 | elfz2 12546 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
11 | eluz2 11905 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾)) | |
12 | eluz2 11905 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) ↔ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ≤ 𝑁)) | |
13 | 11, 12 | anbi12i 735 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ≤ 𝑁))) |
14 | 9, 10, 13 | 3bitr4i 292 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2139 class class class wbr 4804 ‘cfv 6049 (class class class)co 6814 ≤ cle 10287 ℤcz 11589 ℤ≥cuz 11899 ...cfz 12539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-neg 10481 df-z 11590 df-uz 11900 df-fz 12540 |
This theorem is referenced by: eluzfz 12550 elfzuz 12551 elfzuz3 12552 elfzuz2 12559 peano2fzr 12567 fzsplit2 12579 fzass4 12592 fzss1 12593 fzss2 12594 ssfzunsnext 12599 fzp1elp1 12607 fznn 12621 elfz2nn0 12644 elfzofz 12699 fzosplitsnm1 12757 fzofzp1b 12780 fzosplitsn 12790 seqcl2 13033 seqfveq2 13037 monoord 13045 seqid2 13061 bcn1 13314 fz1isolem 13457 seqcoll 13460 ccatrn 13581 swrds1 13671 swrdccat1 13677 swrdccat2 13678 spllen 13725 splfv2a 13727 splval2 13728 caubnd 14317 isercolllem2 14615 isercolllem3 14616 summolem2a 14665 fsum0diag2 14734 climcndslem1 14800 mertenslem1 14835 prodmolem2a 14883 vdwlem2 15908 vdwlem8 15914 gexcl3 18222 efginvrel2 18360 efgredleme 18376 efgcpbllemb 18388 1stckgenlem 21578 imasdsf1olem 22399 iscmet3lem1 23309 dvtaylp 24343 mtest 24377 ppisval 25050 ppisval2 25051 chtdif 25104 ppidif 25109 logfaclbnd 25167 bposlem4 25232 dchrisumlem2 25399 pntpbnd1 25495 fzsplit3 29883 mettrifi 33884 monoordxrv 40228 smonoord 41869 |
Copyright terms: Public domain | W3C validator |