![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzolt2 | Structured version Visualization version GIF version |
Description: A member in a half-open integer interval is less than the upper bound. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
elfzolt2 | ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 < 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoelz 12684 | . . . 4 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ ℤ) | |
2 | elfzoel1 12682 | . . . 4 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ) | |
3 | elfzoel2 12683 | . . . 4 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ) | |
4 | elfzo 12686 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) | |
5 | 1, 2, 3, 4 | syl3anc 1477 | . . 3 ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁))) |
6 | 5 | ibi 256 | . 2 ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁)) |
7 | 6 | simprd 482 | 1 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 < 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2139 class class class wbr 4804 (class class class)co 6814 < clt 10286 ≤ cle 10287 ℤcz 11589 ..^cfzo 12679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-n0 11505 df-z 11590 df-uz 11900 df-fz 12540 df-fzo 12680 |
This theorem is referenced by: elfzolt3 12694 elfzolt2b 12695 fzonel 12697 elfzouz2 12698 fzonnsub 12707 fzospliti 12714 fzodisj 12716 fzouzdisj 12718 fzodisjsn 12720 elfzo0 12723 elfzo1 12732 fzoaddel 12735 elincfzoext 12740 ssfzo12 12775 elfznelfzob 12788 modaddmodlo 12948 ccatrn 13581 swrds2 13905 fzomaxdiflem 14301 fzo0dvdseq 15267 bitsfzolem 15378 bitsfzo 15379 sadcaddlem 15401 sadaddlem 15410 sadasslem 15414 sadeq 15416 smuval2 15426 smupvallem 15427 smueqlem 15434 crth 15705 eulerthlem2 15709 hashgcdlem 15715 prmgaplem6 15982 znf1o 20122 iundisj 23536 tgcgr4 25646 clwlkclwwlklem2fv1 27139 iundisjf 29730 iundisjfi 29885 smattl 30194 smattr 30195 smatbl 30196 signsplypnf 30957 breprexplemc 31040 poimirlem17 33757 poimirlem20 33760 elfzfzo 40005 elfzop1le2 40019 dvnmul 40679 iblspltprt 40710 itgspltprt 40716 stoweidlem3 40741 fourierdlem12 40857 fourierdlem50 40894 fourierdlem64 40908 fourierdlem79 40923 iccpartgt 41891 m1modmmod 42844 |
Copyright terms: Public domain | W3C validator |