Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfzolborelfzop1 Structured version   Visualization version   GIF version

Theorem elfzolborelfzop1 42634
Description: An element of a half-open integer interval is either equal to the left bound of the interval or an element of a half-open integer interval with a lower bound increased by 1. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
elfzolborelfzop1 (𝐾 ∈ (𝑀..^𝑁) → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))

Proof of Theorem elfzolborelfzop1
StepHypRef Expression
1 elfzo2 12512 . 2 (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
2 eluz2 11731 . . . 4 (𝐾 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾))
3 zre 11419 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
4 zre 11419 . . . . . . 7 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
5 leloe 10162 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀𝐾 ↔ (𝑀 < 𝐾𝑀 = 𝐾)))
63, 4, 5syl2an 493 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 ↔ (𝑀 < 𝐾𝑀 = 𝐾)))
7 peano2z 11456 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
87adantr 480 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 + 1) ∈ ℤ)
98ad2antrl 764 . . . . . . . . . . . . . 14 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → (𝑀 + 1) ∈ ℤ)
10 simprlr 820 . . . . . . . . . . . . . 14 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → 𝐾 ∈ ℤ)
11 simpl 472 . . . . . . . . . . . . . . 15 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → 𝑀 < 𝐾)
12 zltp1le 11465 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 < 𝐾 ↔ (𝑀 + 1) ≤ 𝐾))
1312ad2antrl 764 . . . . . . . . . . . . . . 15 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → (𝑀 < 𝐾 ↔ (𝑀 + 1) ≤ 𝐾))
1411, 13mpbid 222 . . . . . . . . . . . . . 14 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → (𝑀 + 1) ≤ 𝐾)
159, 10, 143jca 1261 . . . . . . . . . . . . 13 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → ((𝑀 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐾))
1615adantr 480 . . . . . . . . . . . 12 (((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) ∧ 𝐾 < 𝑁) → ((𝑀 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐾))
17 simplrr 818 . . . . . . . . . . . 12 (((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℤ)
18 simpr 476 . . . . . . . . . . . 12 (((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁)
19 elfzo2 12512 . . . . . . . . . . . . 13 (𝐾 ∈ ((𝑀 + 1)..^𝑁) ↔ (𝐾 ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
20 eluz2 11731 . . . . . . . . . . . . . 14 (𝐾 ∈ (ℤ‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐾))
21203anbi1i 1272 . . . . . . . . . . . . 13 ((𝐾 ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐾) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
2219, 21bitri 264 . . . . . . . . . . . 12 (𝐾 ∈ ((𝑀 + 1)..^𝑁) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐾) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
2316, 17, 18, 22syl3anbrc 1265 . . . . . . . . . . 11 (((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) ∧ 𝐾 < 𝑁) → 𝐾 ∈ ((𝑀 + 1)..^𝑁))
2423olcd 407 . . . . . . . . . 10 (((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) ∧ 𝐾 < 𝑁) → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))
2524exp31 629 . . . . . . . . 9 (𝑀 < 𝐾 → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))))
26 orc 399 . . . . . . . . . . 11 (𝐾 = 𝑀 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))
2726eqcoms 2659 . . . . . . . . . 10 (𝑀 = 𝐾 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))
28272a1d 26 . . . . . . . . 9 (𝑀 = 𝐾 → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))))
2925, 28jaoi 393 . . . . . . . 8 ((𝑀 < 𝐾𝑀 = 𝐾) → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))))
3029expd 451 . . . . . . 7 ((𝑀 < 𝐾𝑀 = 𝐾) → ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁))))))
3130com12 32 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 < 𝐾𝑀 = 𝐾) → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁))))))
326, 31sylbid 230 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁))))))
33323impia 1280 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))))
342, 33sylbi 207 . . 3 (𝐾 ∈ (ℤ𝑀) → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))))
35343imp 1275 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))
361, 35sylbi 207 1 (𝐾 ∈ (𝑀..^𝑁) → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030   class class class wbr 4685  cfv 5926  (class class class)co 6690  cr 9973  1c1 9975   + caddc 9977   < clt 10112  cle 10113  cz 11415  cuz 11725  ..^cfzo 12504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505
This theorem is referenced by:  nnpw2blenfzo2  42701
  Copyright terms: Public domain W3C validator