MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzoext Structured version   Visualization version   GIF version

Theorem elfzoext 12733
Description: Membership of an integer in an extended open range of integers. (Contributed by AV, 30-Apr-2020.)
Assertion
Ref Expression
elfzoext ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼)))

Proof of Theorem elfzoext
StepHypRef Expression
1 elfzoel2 12677 . . 3 (𝑍 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
2 zcn 11584 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3 nn0cn 11504 . . . . . . . 8 (𝐼 ∈ ℕ0𝐼 ∈ ℂ)
4 addcom 10424 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝐼 ∈ ℂ) → (𝑁 + 𝐼) = (𝐼 + 𝑁))
52, 3, 4syl2an 583 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (𝑁 + 𝐼) = (𝐼 + 𝑁))
6 nn0pzuz 11947 . . . . . . . 8 ((𝐼 ∈ ℕ0𝑁 ∈ ℤ) → (𝐼 + 𝑁) ∈ (ℤ𝑁))
76ancoms 455 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (𝐼 + 𝑁) ∈ (ℤ𝑁))
85, 7eqeltrd 2850 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (𝑁 + 𝐼) ∈ (ℤ𝑁))
9 fzoss2 12704 . . . . . 6 ((𝑁 + 𝐼) ∈ (ℤ𝑁) → (𝑀..^𝑁) ⊆ (𝑀..^(𝑁 + 𝐼)))
108, 9syl 17 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → (𝑀..^𝑁) ⊆ (𝑀..^(𝑁 + 𝐼)))
1110sselda 3752 . . . 4 (((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) ∧ 𝑍 ∈ (𝑀..^𝑁)) → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼)))
1211expcom 398 . . 3 (𝑍 ∈ (𝑀..^𝑁) → ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼))))
131, 12mpand 675 . 2 (𝑍 ∈ (𝑀..^𝑁) → (𝐼 ∈ ℕ0𝑍 ∈ (𝑀..^(𝑁 + 𝐼))))
1413imp 393 1 ((𝑍 ∈ (𝑀..^𝑁) ∧ 𝐼 ∈ ℕ0) → 𝑍 ∈ (𝑀..^(𝑁 + 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wss 3723  cfv 6031  (class class class)co 6793  cc 10136   + caddc 10141  0cn0 11494  cz 11579  cuz 11888  ..^cfzo 12673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-fzo 12674
This theorem is referenced by:  ccatval1  13559
  Copyright terms: Public domain W3C validator