MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzoel1 Structured version   Visualization version   GIF version

Theorem elfzoel1 12676
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
elfzoel1 (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ)

Proof of Theorem elfzoel1
StepHypRef Expression
1 ne0i 4069 . . 3 (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ≠ ∅)
2 fzof 12675 . . . . . 6 ..^:(ℤ × ℤ)⟶𝒫 ℤ
32fdmi 6192 . . . . 5 dom ..^ = (ℤ × ℤ)
43ndmov 6965 . . . 4 (¬ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵..^𝐶) = ∅)
54necon1ai 2970 . . 3 ((𝐵..^𝐶) ≠ ∅ → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ))
61, 5syl 17 . 2 (𝐴 ∈ (𝐵..^𝐶) → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ))
76simpld 482 1 (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wcel 2145  wne 2943  c0 4063  𝒫 cpw 4297   × cxp 5247  (class class class)co 6793  cz 11579  ..^cfzo 12673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-neg 10471  df-z 11580  df-uz 11889  df-fz 12534  df-fzo 12674
This theorem is referenced by:  elfzoelz  12678  elfzo2  12681  elfzole1  12686  elfzolt2  12687  elfzolt3  12688  elfzolt3b  12690  fzospliti  12708  fzoaddel  12729  elincfzoext  12734  fzosubel  12735  fzosubel3  12737  fzofzp1  12773  fzostep1  12792  fzomaxdiflem  14290  fzocongeq  15255  caratheodorylem1  41260
  Copyright terms: Public domain W3C validator