MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzodifsumelfzo Structured version   Visualization version   GIF version

Theorem elfzodifsumelfzo 12720
Description: If an integer is in a half-open range of nonnegative integers with a difference as upper bound, the sum of the integer with the subtrahend of the difference is in the a half-open range of nonnegative integers containing the minuend of the difference. (Contributed by AV, 13-Nov-2018.)
Assertion
Ref Expression
elfzodifsumelfzo ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑃)) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃)))

Proof of Theorem elfzodifsumelfzo
StepHypRef Expression
1 elfz2nn0 12616 . . 3 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
2 elfz2nn0 12616 . . . . 5 (𝑁 ∈ (0...𝑃) ↔ (𝑁 ∈ ℕ0𝑃 ∈ ℕ0𝑁𝑃))
3 elfzo0 12695 . . . . . . . 8 (𝐼 ∈ (0..^(𝑁𝑀)) ↔ (𝐼 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝐼 < (𝑁𝑀)))
4 nn0z 11584 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
5 nn0z 11584 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
6 znnsub 11607 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
74, 5, 6syl2an 495 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
8 simpr 479 . . . . . . . . . . . . . . . 16 ((𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℕ0)
9 simpll 807 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℕ0)
10 nn0addcl 11512 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐼 + 𝑀) ∈ ℕ0)
118, 9, 10syl2anr 496 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → (𝐼 + 𝑀) ∈ ℕ0)
1211adantr 472 . . . . . . . . . . . . . 14 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ (𝑃 ∈ ℕ0𝑁𝑃)) → (𝐼 + 𝑀) ∈ ℕ0)
13 0red 10225 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ∈ ℝ)
14 nn0re 11485 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
1514adantr 472 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
16 nn0re 11485 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
1716adantl 473 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
1813, 15, 173jca 1122 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
1918adantr 472 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
20 nn0ge0 11502 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
2120adantr 472 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ 𝑀)
2221anim1i 593 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → (0 ≤ 𝑀𝑀 < 𝑁))
23 lelttr 10312 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑀𝑀 < 𝑁) → 0 < 𝑁))
2419, 22, 23sylc 65 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → 0 < 𝑁)
2524ex 449 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 → 0 < 𝑁))
26 0red 10225 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ∈ ℝ)
2716adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
28 nn0re 11485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℕ0𝑃 ∈ ℝ)
2928adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑃 ∈ ℝ)
30 ltletr 10313 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ) → ((0 < 𝑁𝑁𝑃) → 0 < 𝑃))
3126, 27, 29, 30syl3anc 1473 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → ((0 < 𝑁𝑁𝑃) → 0 < 𝑃))
32 nn0z 11584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℕ0𝑃 ∈ ℤ)
33 elnnz 11571 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∈ ℕ ↔ (𝑃 ∈ ℤ ∧ 0 < 𝑃))
3433simplbi2 656 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℤ → (0 < 𝑃𝑃 ∈ ℕ))
3532, 34syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℕ0 → (0 < 𝑃𝑃 ∈ ℕ))
3635adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑃𝑃 ∈ ℕ))
3731, 36syld 47 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → ((0 < 𝑁𝑁𝑃) → 𝑃 ∈ ℕ))
3837exp4b 633 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (0 < 𝑁 → (𝑁𝑃𝑃 ∈ ℕ))))
3938com24 95 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℕ0 → (𝑁𝑃 → (0 < 𝑁 → (𝑁 ∈ ℕ0𝑃 ∈ ℕ))))
4039imp 444 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℕ0𝑁𝑃) → (0 < 𝑁 → (𝑁 ∈ ℕ0𝑃 ∈ ℕ)))
4140com13 88 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (0 < 𝑁 → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ)))
4241adantl 473 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑁 → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ)))
4325, 42syld 47 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ)))
4443imp 444 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ))
4544adantr 472 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ))
4645imp 444 . . . . . . . . . . . . . 14 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ (𝑃 ∈ ℕ0𝑁𝑃)) → 𝑃 ∈ ℕ)
47 nn0re 11485 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
4847adantl 473 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℝ)
4915adantr 472 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℝ)
50 readdcl 10203 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐼 + 𝑀) ∈ ℝ)
5148, 49, 50syl2anr 496 . . . . . . . . . . . . . . . . . . 19 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → (𝐼 + 𝑀) ∈ ℝ)
5251adantr 472 . . . . . . . . . . . . . . . . . 18 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → (𝐼 + 𝑀) ∈ ℝ)
5317adantr 472 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℝ)
5453adantr 472 . . . . . . . . . . . . . . . . . . 19 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → 𝑁 ∈ ℝ)
5554adantr 472 . . . . . . . . . . . . . . . . . 18 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → 𝑁 ∈ ℝ)
5628adantl 473 . . . . . . . . . . . . . . . . . 18 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → 𝑃 ∈ ℝ)
5752, 55, 563jca 1122 . . . . . . . . . . . . . . . . 17 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → ((𝐼 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ))
5857adantr 472 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) ∧ 𝑁𝑃) → ((𝐼 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ))
5947adantl 473 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℝ)
6015adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐼 ∈ ℕ0) → 𝑀 ∈ ℝ)
6117adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
6259, 60, 61ltaddsubd 10811 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 𝑀) < 𝑁𝐼 < (𝑁𝑀)))
6362exbiri 653 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐼 ∈ ℕ0 → (𝐼 < (𝑁𝑀) → (𝐼 + 𝑀) < 𝑁)))
6463com23 86 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐼 < (𝑁𝑀) → (𝐼 ∈ ℕ0 → (𝐼 + 𝑀) < 𝑁)))
6564impd 446 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 𝑀) < 𝑁))
6665adantr 472 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → ((𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 𝑀) < 𝑁))
6766imp 444 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → (𝐼 + 𝑀) < 𝑁)
6867adantr 472 . . . . . . . . . . . . . . . . 17 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → (𝐼 + 𝑀) < 𝑁)
6968anim1i 593 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) ∧ 𝑁𝑃) → ((𝐼 + 𝑀) < 𝑁𝑁𝑃))
70 ltletr 10313 . . . . . . . . . . . . . . . 16 (((𝐼 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (((𝐼 + 𝑀) < 𝑁𝑁𝑃) → (𝐼 + 𝑀) < 𝑃))
7158, 69, 70sylc 65 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) ∧ 𝑁𝑃) → (𝐼 + 𝑀) < 𝑃)
7271anasss 682 . . . . . . . . . . . . . 14 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ (𝑃 ∈ ℕ0𝑁𝑃)) → (𝐼 + 𝑀) < 𝑃)
73 elfzo0 12695 . . . . . . . . . . . . . 14 ((𝐼 + 𝑀) ∈ (0..^𝑃) ↔ ((𝐼 + 𝑀) ∈ ℕ0𝑃 ∈ ℕ ∧ (𝐼 + 𝑀) < 𝑃))
7412, 46, 72, 73syl3anbrc 1426 . . . . . . . . . . . . 13 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ (𝑃 ∈ ℕ0𝑁𝑃)) → (𝐼 + 𝑀) ∈ (0..^𝑃))
7574exp53 648 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 → (𝐼 < (𝑁𝑀) → (𝐼 ∈ ℕ0 → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))))
767, 75sylbird 250 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁𝑀) ∈ ℕ → (𝐼 < (𝑁𝑀) → (𝐼 ∈ ℕ0 → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))))
77763adant3 1126 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝑁𝑀) ∈ ℕ → (𝐼 < (𝑁𝑀) → (𝐼 ∈ ℕ0 → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))))
7877com14 96 . . . . . . . . 9 (𝐼 ∈ ℕ0 → ((𝑁𝑀) ∈ ℕ → (𝐼 < (𝑁𝑀) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))))
79783imp 1101 . . . . . . . 8 ((𝐼 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝐼 < (𝑁𝑀)) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
803, 79sylbi 207 . . . . . . 7 (𝐼 ∈ (0..^(𝑁𝑀)) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
8180com13 88 . . . . . 6 ((𝑃 ∈ ℕ0𝑁𝑃) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
82813adant1 1124 . . . . 5 ((𝑁 ∈ ℕ0𝑃 ∈ ℕ0𝑁𝑃) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
832, 82sylbi 207 . . . 4 (𝑁 ∈ (0...𝑃) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
8483com12 32 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑁 ∈ (0...𝑃) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
851, 84sylbi 207 . 2 (𝑀 ∈ (0...𝑁) → (𝑁 ∈ (0...𝑃) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
8685imp 444 1 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑃)) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072  wcel 2131   class class class wbr 4796  (class class class)co 6805  cr 10119  0cc0 10120   + caddc 10123   < clt 10258  cle 10259  cmin 10450  cn 11204  0cn0 11476  cz 11561  ...cfz 12511  ..^cfzo 12651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-n0 11477  df-z 11562  df-uz 11872  df-fz 12512  df-fzo 12652
This theorem is referenced by:  elfzom1elp1fzo  12721  swrdco  13775
  Copyright terms: Public domain W3C validator