![]() |
Mathbox for Paul Chapman |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elfzm12 | Structured version Visualization version GIF version |
Description: Membership in a curtailed finite sequence of integers. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
elfzm12 | ⊢ (𝑁 ∈ ℕ → (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ∈ (1...𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 11583 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
2 | zre 11565 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
3 | 2 | lem1d 11141 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ≤ 𝑁) |
4 | peano2zm 11604 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
5 | eluz 11885 | . . . . 5 ⊢ (((𝑁 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘(𝑁 − 1)) ↔ (𝑁 − 1) ≤ 𝑁)) | |
6 | 4, 5 | mpancom 706 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 ∈ (ℤ≥‘(𝑁 − 1)) ↔ (𝑁 − 1) ≤ 𝑁)) |
7 | 3, 6 | mpbird 247 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
8 | fzss2 12566 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘(𝑁 − 1)) → (1...(𝑁 − 1)) ⊆ (1...𝑁)) | |
9 | 1, 7, 8 | 3syl 18 | . 2 ⊢ (𝑁 ∈ ℕ → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
10 | 9 | sseld 3735 | 1 ⊢ (𝑁 ∈ ℕ → (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ∈ (1...𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 2131 ⊆ wss 3707 class class class wbr 4796 ‘cfv 6041 (class class class)co 6805 1c1 10121 ≤ cle 10259 − cmin 10450 ℕcn 11204 ℤcz 11561 ℤ≥cuz 11871 ...cfz 12511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-n0 11477 df-z 11562 df-uz 11872 df-fz 12512 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |