![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzel2 | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzel2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz3 12532 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
2 | eluzelz 11889 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ ℤ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6813 ℤcz 11569 ℤ≥cuz 11879 ...cfz 12519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-neg 10461 df-z 11570 df-uz 11880 df-fz 12520 |
This theorem is referenced by: elfz1eq 12545 fzdisj 12561 fzssp1 12577 fzp1disj 12592 fzrev2i 12598 fzrev3 12599 elfz1b 12602 fznuz 12615 fznn0sub2 12640 elfzmlbm 12643 difelfznle 12647 nn0disj 12649 fz1fzo0m1 12710 fzofzp1b 12760 bcm1k 13296 bcp1nk 13298 swrdccatin12lem2 13689 spllen 13705 fsum0diag2 14714 fallfacval3 14942 fallfacval4 14973 psgnunilem2 18115 pntpbnd1 25474 crctcshwlkn0 26924 elfzfzo 39987 sumnnodd 40365 dvnmul 40661 dvnprodlem1 40664 dvnprodlem2 40665 stoweidlem34 40754 fourierdlem11 40838 fourierdlem12 40839 fourierdlem15 40842 fourierdlem41 40868 fourierdlem48 40874 fourierdlem49 40875 fourierdlem54 40880 fourierdlem79 40905 fourierdlem102 40928 fourierdlem114 40940 etransclem23 40977 etransclem35 40989 iundjiun 41180 2elfz2melfz 41838 elfzelfzlble 41841 iccpartiltu 41868 iccpartgt 41873 pfxccatin12lem2 41934 |
Copyright terms: Public domain | W3C validator |