![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elfz2z | Structured version Visualization version GIF version |
Description: Membership of an integer in a finite set of sequential integers starting at 0. (Contributed by Alexander van der Vekens, 25-May-2018.) |
Ref | Expression |
---|---|
elfz2z | ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ (0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz2nn0 12624 | . . 3 ⊢ (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁)) | |
2 | df-3an 1074 | . . 3 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁) ↔ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 𝐾 ≤ 𝑁)) | |
3 | 1, 2 | bitri 264 | . 2 ⊢ (𝐾 ∈ (0...𝑁) ↔ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 𝐾 ≤ 𝑁)) |
4 | nn0ge0 11510 | . . . . . 6 ⊢ (𝐾 ∈ ℕ0 → 0 ≤ 𝐾) | |
5 | 4 | adantr 472 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝐾) |
6 | simpll 807 | . . . . . . . . 9 ⊢ (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) → 𝐾 ∈ ℤ) | |
7 | 6 | anim1i 593 | . . . . . . . 8 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) ∧ 0 ≤ 𝐾) → (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾)) |
8 | elnn0z 11582 | . . . . . . . 8 ⊢ (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾)) | |
9 | 7, 8 | sylibr 224 | . . . . . . 7 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) ∧ 0 ≤ 𝐾) → 𝐾 ∈ ℕ0) |
10 | 0red 10233 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ ℝ) | |
11 | zre 11573 | . . . . . . . . . . . 12 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
12 | 11 | adantr 472 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℝ) |
13 | zre 11573 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
14 | 13 | adantl 473 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ) |
15 | letr 10323 | . . . . . . . . . . 11 ⊢ ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) → 0 ≤ 𝑁)) | |
16 | 10, 12, 14, 15 | syl3anc 1477 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) → 0 ≤ 𝑁)) |
17 | elnn0z 11582 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) | |
18 | 17 | simplbi2 656 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → (0 ≤ 𝑁 → 𝑁 ∈ ℕ0)) |
19 | 18 | adantl 473 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁 → 𝑁 ∈ ℕ0)) |
20 | 16, 19 | syld 47 | . . . . . . . . 9 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁) → 𝑁 ∈ ℕ0)) |
21 | 20 | expcomd 453 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ≤ 𝑁 → (0 ≤ 𝐾 → 𝑁 ∈ ℕ0))) |
22 | 21 | imp31 447 | . . . . . . 7 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) ∧ 0 ≤ 𝐾) → 𝑁 ∈ ℕ0) |
23 | 9, 22 | jca 555 | . . . . . 6 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) ∧ 0 ≤ 𝐾) → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) |
24 | 23 | ex 449 | . . . . 5 ⊢ (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) → (0 ≤ 𝐾 → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0))) |
25 | 5, 24 | impbid2 216 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ≤ 𝑁) → ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ↔ 0 ≤ 𝐾)) |
26 | 25 | ex 449 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ≤ 𝑁 → ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ↔ 0 ≤ 𝐾))) |
27 | 26 | pm5.32rd 675 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 𝐾 ≤ 𝑁) ↔ (0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
28 | 3, 27 | syl5bb 272 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ (0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2139 class class class wbr 4804 (class class class)co 6813 ℝcr 10127 0cc0 10128 ≤ cle 10267 ℕ0cn0 11484 ℤcz 11569 ...cfz 12519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-n0 11485 df-z 11570 df-uz 11880 df-fz 12520 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |