![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfz1end | Structured version Visualization version GIF version |
Description: A nonempty finite range of integers contains its end point. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
Ref | Expression |
---|---|
elfz1end | ⊢ (𝐴 ∈ ℕ ↔ 𝐴 ∈ (1...𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnnuz 11925 | . . . 4 ⊢ (𝐴 ∈ ℕ ↔ 𝐴 ∈ (ℤ≥‘1)) | |
2 | 1 | biimpi 206 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ≥‘1)) |
3 | nnz 11600 | . . . 4 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
4 | uzid 11902 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ (ℤ≥‘𝐴)) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ≥‘𝐴)) |
6 | eluzfz 12543 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘1) ∧ 𝐴 ∈ (ℤ≥‘𝐴)) → 𝐴 ∈ (1...𝐴)) | |
7 | 2, 5, 6 | syl2anc 565 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ (1...𝐴)) |
8 | elfznn 12576 | . 2 ⊢ (𝐴 ∈ (1...𝐴) → 𝐴 ∈ ℕ) | |
9 | 7, 8 | impbii 199 | 1 ⊢ (𝐴 ∈ ℕ ↔ 𝐴 ∈ (1...𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∈ wcel 2144 ‘cfv 6031 (class class class)co 6792 1c1 10138 ℕcn 11221 ℤcz 11578 ℤ≥cuz 11887 ...cfz 12532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-z 11579 df-uz 11888 df-fz 12533 |
This theorem is referenced by: swrdtrcfv 13649 swrdccatwrd 13676 prmind2 15604 strlemor1OLD 16176 1stcfb 21468 imasdsf1olem 22397 taylthlem1 24346 birthdaylem1 24898 2sqlem10 25373 clwwlkvbij 27286 clwwlkvbijOLDOLD 27287 clwwlkvbijOLD 27288 submat1n 30205 subfacp1lem6 31499 erdszelem4 31508 erdszelem8 31512 poimirlem4 33739 poimirlem6 33741 poimirlem7 33742 poimirlem16 33751 poimirlem19 33754 poimirlem20 33755 poimirlem23 33758 rexrabdioph 37877 2rexfrabdioph 37879 3rexfrabdioph 37880 4rexfrabdioph 37881 6rexfrabdioph 37882 7rexfrabdioph 37883 elnn0rabdioph 37886 dvdsrabdioph 37893 jm2.27dlem3 38097 pfxtrcfv 41919 |
Copyright terms: Public domain | W3C validator |