MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz0ubfz0 Structured version   Visualization version   GIF version

Theorem elfz0ubfz0 12650
Description: An element of a finite set of sequential nonnegative integers is an element of a finite set of sequential nonnegative integers with the upper bound being an element of the finite set of sequential nonnegative integers with the same lower bound as for the first interval and the element under consideration as upper bound. (Contributed by Alexander van der Vekens, 3-Apr-2018.)
Assertion
Ref Expression
elfz0ubfz0 ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐾 ∈ (0...𝐿))

Proof of Theorem elfz0ubfz0
StepHypRef Expression
1 elfz2nn0 12637 . . . 4 (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁))
2 elfz2 12539 . . . . . 6 (𝐿 ∈ (𝐾...𝑁) ↔ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)))
3 simpr1 1232 . . . . . . . 8 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) ∧ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁)) → 𝐾 ∈ ℕ0)
4 elnn0z 11591 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
5 simpr 471 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℤ)
6 0z 11589 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℤ
7 zletr 11622 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐾𝐾𝐿) → 0 ≤ 𝐿))
86, 7mp3an1 1558 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐾𝐾𝐿) → 0 ≤ 𝐿))
9 elnn0z 11591 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℕ0 ↔ (𝐿 ∈ ℤ ∧ 0 ≤ 𝐿))
109simplbi2 482 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ℤ → (0 ≤ 𝐿𝐿 ∈ ℕ0))
115, 8, 10sylsyld 61 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐾𝐾𝐿) → 𝐿 ∈ ℕ0))
1211expd 400 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝐾 → (𝐾𝐿𝐿 ∈ ℕ0)))
1312impancom 439 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) → (𝐿 ∈ ℤ → (𝐾𝐿𝐿 ∈ ℕ0)))
144, 13sylbi 207 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ0 → (𝐿 ∈ ℤ → (𝐾𝐿𝐿 ∈ ℕ0)))
1514com13 88 . . . . . . . . . . . . . . 15 (𝐾𝐿 → (𝐿 ∈ ℤ → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0)))
1615adantr 466 . . . . . . . . . . . . . 14 ((𝐾𝐿𝐿𝑁) → (𝐿 ∈ ℤ → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0)))
1716com12 32 . . . . . . . . . . . . 13 (𝐿 ∈ ℤ → ((𝐾𝐿𝐿𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0)))
18173ad2ant3 1128 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐾𝐿𝐿𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0)))
1918imp 393 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0))
2019com12 32 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) → 𝐿 ∈ ℕ0))
21203ad2ant1 1126 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) → (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) → 𝐿 ∈ ℕ0))
2221impcom 394 . . . . . . . 8 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) ∧ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁)) → 𝐿 ∈ ℕ0)
23 simplrl 754 . . . . . . . 8 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) ∧ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁)) → 𝐾𝐿)
243, 22, 233jca 1121 . . . . . . 7 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) ∧ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁)) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿))
2524ex 397 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) → ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿)))
262, 25sylbi 207 . . . . 5 (𝐿 ∈ (𝐾...𝑁) → ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿)))
2726com12 32 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) → (𝐿 ∈ (𝐾...𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿)))
281, 27sylbi 207 . . 3 (𝐾 ∈ (0...𝑁) → (𝐿 ∈ (𝐾...𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿)))
2928imp 393 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿))
30 elfz2nn0 12637 . 2 (𝐾 ∈ (0...𝐿) ↔ (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿))
3129, 30sylibr 224 1 ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐾 ∈ (0...𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070  wcel 2144   class class class wbr 4784  (class class class)co 6792  0cc0 10137  cle 10276  0cn0 11493  cz 11578  ...cfz 12532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533
This theorem is referenced by:  swrdswrd  13668
  Copyright terms: Public domain W3C validator