MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz Structured version   Visualization version   GIF version

Theorem elfz 12546
Description: Membership in a finite set of sequential integers. (Contributed by NM, 29-Sep-2005.)
Assertion
Ref Expression
elfz ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))

Proof of Theorem elfz
StepHypRef Expression
1 elfz1 12545 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))
2 3anass 1081 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))
32baib 982 . . . 4 (𝐾 ∈ ℤ → ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) ↔ (𝑀𝐾𝐾𝑁)))
41, 3sylan9bb 738 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
543impa 1101 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
653comr 1120 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072  wcel 2140   class class class wbr 4805  (class class class)co 6815  cle 10288  cz 11590  ...cfz 12540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pr 5056  ax-cnex 10205  ax-resscn 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3343  df-sbc 3578  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-br 4806  df-opab 4866  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-iota 6013  df-fun 6052  df-fv 6058  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-neg 10482  df-z 11591  df-fz 12541
This theorem is referenced by:  elfz5  12548  fzadd2  12590  fznatpl1  12609  fzrev  12617  fzctr  12666  elfzo  12687  seqf1olem1  13055  bcval5  13320  isprm3  15619  hashdvds  15703  eulerthlem2  15710  prmreclem5  15847  aannenlem1  24303  basellem3  25030  chtub  25158  bcmono  25223  bposlem1  25230  lgseisenlem1  25321  lgsquadlem1  25326  2lgslem1a  25337  axlowdimlem3  26045  axlowdimlem7  26049  axlowdimlem16  26058  axlowdimlem17  26059  axlowdim  26062  submateqlem1  30204  lmatfvlem  30212  bcneg1  31951  poimirlem15  33756  poimirlem24  33765  poimirlem28  33769  mblfinlem2  33779  itg2addnclem2  33794  fzmul  33869  cntotbnd  33927  fzsplit1nn0  37838  irrapxlem3  37909  pellexlem5  37918  acongrep  38068  fzneg  38070  jm2.23  38084  fmul01  40334  fmuldfeq  40337  stoweidlem26  40765  fourierdlem11  40857  fourierdlem12  40858  fourierdlem15  40861  fourierdlem79  40924  smfmullem4  41526  pfxccat3a  41958
  Copyright terms: Public domain W3C validator