![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfvex | Structured version Visualization version GIF version |
Description: If a function value has a member, the argument is a set. (Contributed by Mario Carneiro, 6-Nov-2015.) |
Ref | Expression |
---|---|
elfvex | ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6333 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) | |
2 | elex 3316 | . 2 ⊢ (𝐵 ∈ dom 𝐹 → 𝐵 ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2103 Vcvv 3304 dom cdm 5218 ‘cfv 6001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-nul 4897 ax-pow 4948 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-dm 5228 df-iota 5964 df-fv 6009 |
This theorem is referenced by: elfvexd 6335 fviss 6370 fiin 8444 elharval 8584 elfzp12 12533 ismre 16373 ismri 16414 isacs 16434 oppccofval 16498 gexid 18117 efgrcl 18249 islss 19058 thlle 20164 islbs4 20294 istopon 20840 fgval 21796 fgcl 21804 ufilen 21856 ustssxp 22130 ustbasel 22132 ustincl 22133 ustdiag 22134 ustinvel 22135 ustexhalf 22136 ustfilxp 22138 ustbas2 22151 trust 22155 utopval 22158 elutop 22159 restutop 22163 ustuqtop5 22171 isucn 22204 psmetdmdm 22232 psmetf 22233 psmet0 22235 psmettri2 22236 psmetres2 22241 ismet2 22260 xmetpsmet 22275 metustfbas 22484 metust 22485 iscmet 23203 ulmscl 24253 1vgrex 26002 wlkcompim 26658 clwlkcompim 26807 wwlkbp 26865 2wlkdlem7 26973 clwwlkbp 27029 3wlkdlem7 27239 metidval 30163 pstmval 30168 pstmxmet 30170 issiga 30404 insiga 30430 mvrsval 31630 mrsubcv 31635 mrsubccat 31643 mppsval 31697 topdifinffinlem 33427 istotbnd 33800 isbnd 33811 ismrc 37683 isnacs 37686 mzpcl1 37711 mzpcl2 37712 mzpf 37718 mzpadd 37720 mzpmul 37721 mzpsubmpt 37725 mzpnegmpt 37726 mzpexpmpt 37727 mzpindd 37728 mzpsubst 37730 mzpcompact2 37734 mzpcong 37958 sprel 42161 clintop 42271 assintop 42272 clintopcllaw 42274 assintopcllaw 42275 assintopass 42277 |
Copyright terms: Public domain | W3C validator |