![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elexd | Structured version Visualization version GIF version |
Description: If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
elexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
elexd | ⊢ (𝜑 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | elex 3344 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2131 Vcvv 3332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-12 2188 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-an 385 df-tru 1627 df-ex 1846 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-v 3334 |
This theorem is referenced by: reuhypd 5036 ideqg 5421 elrnmptg 5522 fvmptd3f 6449 pospropd 17327 gsumvalx 17463 isunit 18849 israg 25783 structtocusgr 26544 1loopgrnb0 26600 iswlkg 26711 sitgval 30695 breprexplema 31009 bnj1463 31422 wsuclem 32068 rfovd 38789 fsovd 38796 fsovrfovd 38797 dssmapfvd 38805 projf1o 39877 mapsnend 39882 limsupvaluz 40435 limsupequzmpt2 40445 limsupvaluz2 40465 liminfequzmpt2 40518 rrxsnicc 41015 ioorrnopnlem 41019 ioorrnopnxrlem 41021 subsaliuncl 41071 sge0xaddlem1 41145 sge0xaddlem2 41146 sge0xadd 41147 sge0splitsn 41153 meaiininclem 41198 hoiprodcl2 41267 hoicvrrex 41268 ovn0lem 41277 hoidmvlelem3 41309 ovnhoilem1 41313 hoicoto2 41317 hoidifhspval3 41331 hoiqssbllem1 41334 ovolval4lem1 41361 vonvolmbl 41373 iinhoiicclem 41385 iunhoiioolem 41387 vonioolem1 41392 vonioolem2 41393 vonicclem1 41395 vonicclem2 41396 decsmf 41473 smflimlem4 41480 smfmullem4 41499 smfco 41507 smfpimcclem 41511 smflimsuplem5 41528 smflimsupmpt 41533 smfliminfmpt 41536 opabresex0d 41804 setsnidel 41849 isupwlkg 42220 |
Copyright terms: Public domain | W3C validator |