![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elex2VD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of elex2 3352. (Contributed by Alan Sare, 25-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elex2VD | ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idn1 39288 | . . . . . 6 ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) | |
2 | idn2 39336 | . . . . . 6 ⊢ ( 𝐴 ∈ 𝐵 , 𝑥 = 𝐴 ▶ 𝑥 = 𝐴 ) | |
3 | eleq1a 2830 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | |
4 | 1, 2, 3 | e12 39449 | . . . . 5 ⊢ ( 𝐴 ∈ 𝐵 , 𝑥 = 𝐴 ▶ 𝑥 ∈ 𝐵 ) |
5 | 4 | in2 39328 | . . . 4 ⊢ ( 𝐴 ∈ 𝐵 ▶ (𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ) |
6 | 5 | gen11 39339 | . . 3 ⊢ ( 𝐴 ∈ 𝐵 ▶ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ) |
7 | elisset 3351 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
8 | 1, 7 | e1a 39350 | . . 3 ⊢ ( 𝐴 ∈ 𝐵 ▶ ∃𝑥 𝑥 = 𝐴 ) |
9 | exim 1906 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥 𝑥 ∈ 𝐵)) | |
10 | 6, 8, 9 | e11 39411 | . 2 ⊢ ( 𝐴 ∈ 𝐵 ▶ ∃𝑥 𝑥 ∈ 𝐵 ) |
11 | 10 | in1 39285 | 1 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1626 = wceq 1628 ∃wex 1849 ∈ wcel 2135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-9 2144 ax-12 2192 ax-ext 2736 |
This theorem depends on definitions: df-bi 197 df-an 385 df-tru 1631 df-ex 1850 df-sb 2043 df-clab 2743 df-cleq 2749 df-clel 2752 df-v 3338 df-vd1 39284 df-vd2 39292 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |