![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elestrchom | Structured version Visualization version GIF version |
Description: A morphism between extensible structures is a function between their base sets. (Contributed by AV, 7-Mar-2020.) |
Ref | Expression |
---|---|
estrcbas.c | ⊢ 𝐶 = (ExtStrCat‘𝑈) |
estrcbas.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
estrchomfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
estrchom.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
estrchom.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
estrchom.a | ⊢ 𝐴 = (Base‘𝑋) |
estrchom.b | ⊢ 𝐵 = (Base‘𝑌) |
Ref | Expression |
---|---|
elestrchom | ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) ↔ 𝐹:𝐴⟶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | estrcbas.c | . . . 4 ⊢ 𝐶 = (ExtStrCat‘𝑈) | |
2 | estrcbas.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | estrchomfval.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | estrchom.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
5 | estrchom.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
6 | estrchom.a | . . . 4 ⊢ 𝐴 = (Base‘𝑋) | |
7 | estrchom.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
8 | 1, 2, 3, 4, 5, 6, 7 | estrchom 16988 | . . 3 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝐵 ↑𝑚 𝐴)) |
9 | 8 | eleq2d 2825 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) ↔ 𝐹 ∈ (𝐵 ↑𝑚 𝐴))) |
10 | fvex 6363 | . . . . 5 ⊢ (Base‘𝑌) ∈ V | |
11 | 7, 10 | eqeltri 2835 | . . . 4 ⊢ 𝐵 ∈ V |
12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
13 | fvex 6363 | . . . . 5 ⊢ (Base‘𝑋) ∈ V | |
14 | 6, 13 | eqeltri 2835 | . . . 4 ⊢ 𝐴 ∈ V |
15 | 14 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
16 | elmapg 8038 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ V) → (𝐹 ∈ (𝐵 ↑𝑚 𝐴) ↔ 𝐹:𝐴⟶𝐵)) | |
17 | 12, 15, 16 | syl2anc 696 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝐵 ↑𝑚 𝐴) ↔ 𝐹:𝐴⟶𝐵)) |
18 | 9, 17 | bitrd 268 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) ↔ 𝐹:𝐴⟶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 ↑𝑚 cmap 8025 Basecbs 16079 Hom chom 16174 ExtStrCatcestrc 16983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-fz 12540 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-hom 16188 df-cco 16189 df-estrc 16984 |
This theorem is referenced by: estrccatid 16993 fullsetcestrc 17027 |
Copyright terms: Public domain | W3C validator |