![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleqtri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993.) |
Ref | Expression |
---|---|
eleqtri.1 | ⊢ 𝐴 ∈ 𝐵 |
eleqtri.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
eleqtri | ⊢ 𝐴 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtri.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | eleqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | eleq2i 2842 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶) |
4 | 1, 3 | mpbi 220 | 1 ⊢ 𝐴 ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∈ wcel 2145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-ex 1853 df-cleq 2764 df-clel 2767 |
This theorem is referenced by: eleqtrri 2849 3eltr3i 2862 prid2 4434 2eluzge0 11935 fz0to4untppr 12650 seqp1i 13024 faclbnd4lem1 13284 cats1fv 13813 bpoly2 14994 bpoly3 14995 bpoly4 14996 ef0lem 15015 phi1 15685 gsumws1 17584 lt6abl 18503 uvcvvcl 20343 smadiadetlem4 20694 indiscld 21116 cnrehmeo 22972 ovolicc1 23504 dvcjbr 23932 vieta1lem2 24286 dvloglem 24615 logdmopn 24616 efopnlem2 24624 cxpcn 24707 loglesqrt 24720 log2ublem2 24895 efrlim 24917 tgcgr4 25647 axlowdimlem16 26058 axlowdimlem17 26059 nlelchi 29260 hmopidmchi 29350 raddcn 30315 xrge0tmd 30332 indf 30417 ballotlem1ri 30936 chtvalz 31047 circlemethhgt 31061 dvtanlem 33791 ftc1cnnc 33816 dvasin 33828 dvacos 33829 dvreasin 33830 dvreacos 33831 areacirclem2 33833 areacirclem4 33835 cncfres 33896 jm2.23 38089 fvnonrel 38429 frege54cor1c 38735 fourierdlem28 40869 fourierdlem57 40897 fourierdlem59 40899 fourierdlem62 40902 fourierdlem68 40908 fouriersw 40965 etransclem23 40991 etransclem35 41003 etransclem38 41006 etransclem39 41007 etransclem44 41012 etransclem45 41013 etransclem47 41015 rrxtopn0 41030 hoidmvlelem2 41330 vonicclem2 41418 fmtno4prmfac 42012 |
Copyright terms: Public domain | W3C validator |