![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleq12 | Structured version Visualization version GIF version |
Description: Equality implies equivalence of membership. (Contributed by NM, 31-May-1999.) |
Ref | Expression |
---|---|
eleq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2791 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
2 | eleq2 2792 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) | |
3 | 1, 2 | sylan9bb 738 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1596 ∈ wcel 2103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1818 df-cleq 2717 df-clel 2720 |
This theorem is referenced by: trel 4867 pwnss 4935 epelg 5134 preleq 8627 oemapval 8693 cantnf 8703 wemapwe 8707 nnsdomel 8929 cldval 20950 isufil 21829 umgr2v2enb1 26553 issiga 30404 matunitlindf 33639 wepwsolem 38031 aomclem8 38050 nelbr 41717 |
Copyright terms: Public domain | W3C validator |