![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elee | Structured version Visualization version GIF version |
Description: Membership in a Euclidean space. We define Euclidean space here using Cartesian coordinates over 𝑁 space. We later abstract away from this using Tarski's geometry axioms, so this exact definition is unimportant. (Contributed by Scott Fenton, 3-Jun-2013.) |
Ref | Expression |
---|---|
elee | ⊢ (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6821 | . . . . 5 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
2 | 1 | oveq2d 6829 | . . . 4 ⊢ (𝑛 = 𝑁 → (ℝ ↑𝑚 (1...𝑛)) = (ℝ ↑𝑚 (1...𝑁))) |
3 | df-ee 25970 | . . . 4 ⊢ 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑𝑚 (1...𝑛))) | |
4 | ovex 6841 | . . . 4 ⊢ (ℝ ↑𝑚 (1...𝑁)) ∈ V | |
5 | 2, 3, 4 | fvmpt 6444 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝔼‘𝑁) = (ℝ ↑𝑚 (1...𝑁))) |
6 | 5 | eleq2d 2825 | . 2 ⊢ (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴 ∈ (ℝ ↑𝑚 (1...𝑁)))) |
7 | reex 10219 | . . 3 ⊢ ℝ ∈ V | |
8 | ovex 6841 | . . 3 ⊢ (1...𝑁) ∈ V | |
9 | 7, 8 | elmap 8052 | . 2 ⊢ (𝐴 ∈ (ℝ ↑𝑚 (1...𝑁)) ↔ 𝐴:(1...𝑁)⟶ℝ) |
10 | 6, 9 | syl6bb 276 | 1 ⊢ (𝑁 ∈ ℕ → (𝐴 ∈ (𝔼‘𝑁) ↔ 𝐴:(1...𝑁)⟶ℝ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2139 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 ↑𝑚 cmap 8023 ℝcr 10127 1c1 10129 ℕcn 11212 ...cfz 12519 𝔼cee 25967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-map 8025 df-ee 25970 |
This theorem is referenced by: mptelee 25974 eleei 25976 axlowdimlem5 26025 axlowdimlem7 26027 axlowdimlem10 26030 axlowdimlem14 26034 axlowdim1 26038 |
Copyright terms: Public domain | W3C validator |