Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleclclwwlknlem2 Structured version   Visualization version   GIF version

Theorem eleclclwwlknlem2 27214
 Description: Lemma 2 for eleclclwwlkn 27229. (Contributed by Alexander van der Vekens, 11-May-2018.) (Revised by AV, 30-Apr-2021.)
Hypothesis
Ref Expression
erclwwlkn1.w 𝑊 = (𝑁 ClWWalksN 𝐺)
Assertion
Ref Expression
eleclclwwlknlem2 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
Distinct variable groups:   𝑚,𝑛,𝐺   𝑚,𝑁,𝑛   𝑚,𝑋,𝑛   𝑚,𝑌,𝑛   𝑘,𝑚,𝑛   𝑥,𝑚,𝑛
Allowed substitution hints:   𝐺(𝑥,𝑘)   𝑁(𝑥,𝑘)   𝑊(𝑥,𝑘,𝑚,𝑛)   𝑋(𝑥,𝑘)   𝑌(𝑥,𝑘)

Proof of Theorem eleclclwwlknlem2
StepHypRef Expression
1 simpl 474 . . . . 5 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → 𝑘 ∈ (0...𝑁))
21anim1i 593 . . . 4 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑘 ∈ (0...𝑁) ∧ (𝑋𝑊𝑥𝑊)))
32adantr 472 . . 3 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)) → (𝑘 ∈ (0...𝑁) ∧ (𝑋𝑊𝑥𝑊)))
4 simpr 479 . . . . 5 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → 𝑋 = (𝑥 cyclShift 𝑘))
54adantr 472 . . . 4 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → 𝑋 = (𝑥 cyclShift 𝑘))
65anim1i 593 . . 3 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)) → (𝑋 = (𝑥 cyclShift 𝑘) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)))
7 erclwwlkn1.w . . . 4 𝑊 = (𝑁 ClWWalksN 𝐺)
87eleclclwwlknlem1 27213 . . 3 ((𝑘 ∈ (0...𝑁) ∧ (𝑋𝑊𝑥𝑊)) → ((𝑋 = (𝑥 cyclShift 𝑘) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
93, 6, 8sylc 65 . 2 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))
10 eqid 2761 . . . . . . . . . . . 12 (Vtx‘𝐺) = (Vtx‘𝐺)
1110clwwlknbp 27185 . . . . . . . . . . 11 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁))
1211, 7eleq2s 2858 . . . . . . . . . 10 (𝑥𝑊 → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁))
13 fznn0sub2 12661 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ (0...𝑁))
14 oveq1 6822 . . . . . . . . . . . . 13 ((♯‘𝑥) = 𝑁 → ((♯‘𝑥) − 𝑘) = (𝑁𝑘))
1514eleq1d 2825 . . . . . . . . . . . 12 ((♯‘𝑥) = 𝑁 → (((♯‘𝑥) − 𝑘) ∈ (0...𝑁) ↔ (𝑁𝑘) ∈ (0...𝑁)))
1613, 15syl5ibr 236 . . . . . . . . . . 11 ((♯‘𝑥) = 𝑁 → (𝑘 ∈ (0...𝑁) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
1716adantl 473 . . . . . . . . . 10 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑘 ∈ (0...𝑁) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
1812, 17syl 17 . . . . . . . . 9 (𝑥𝑊 → (𝑘 ∈ (0...𝑁) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
1918adantl 473 . . . . . . . 8 ((𝑋𝑊𝑥𝑊) → (𝑘 ∈ (0...𝑁) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
2019com12 32 . . . . . . 7 (𝑘 ∈ (0...𝑁) → ((𝑋𝑊𝑥𝑊) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
2120adantr 472 . . . . . 6 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → ((𝑋𝑊𝑥𝑊) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁)))
2221imp 444 . . . . 5 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁))
2322adantr 472 . . . 4 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → ((♯‘𝑥) − 𝑘) ∈ (0...𝑁))
24 simpr 479 . . . . . 6 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑋𝑊𝑥𝑊))
2524ancomd 466 . . . . 5 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑥𝑊𝑋𝑊))
2625adantr 472 . . . 4 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → (𝑥𝑊𝑋𝑊))
2723, 26jca 555 . . 3 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → (((♯‘𝑥) − 𝑘) ∈ (0...𝑁) ∧ (𝑥𝑊𝑋𝑊)))
28 simpll 807 . . . . . . . . . . . . 13 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑘 ∈ (0...𝑁)) → 𝑥 ∈ Word (Vtx‘𝐺))
29 oveq2 6823 . . . . . . . . . . . . . . . . 17 (𝑁 = (♯‘𝑥) → (0...𝑁) = (0...(♯‘𝑥)))
3029eleq2d 2826 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑥) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...(♯‘𝑥))))
3130eqcoms 2769 . . . . . . . . . . . . . . 15 ((♯‘𝑥) = 𝑁 → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...(♯‘𝑥))))
3231adantl 473 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...(♯‘𝑥))))
3332biimpa 502 . . . . . . . . . . . . 13 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...(♯‘𝑥)))
3428, 33jca 555 . . . . . . . . . . . 12 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥))))
3534ex 449 . . . . . . . . . . 11 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑥) = 𝑁) → (𝑘 ∈ (0...𝑁) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥)))))
3612, 35syl 17 . . . . . . . . . 10 (𝑥𝑊 → (𝑘 ∈ (0...𝑁) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥)))))
3736adantl 473 . . . . . . . . 9 ((𝑋𝑊𝑥𝑊) → (𝑘 ∈ (0...𝑁) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥)))))
3837com12 32 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → ((𝑋𝑊𝑥𝑊) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥)))))
3938adantr 472 . . . . . . 7 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → ((𝑋𝑊𝑥𝑊) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥)))))
4039imp 444 . . . . . 6 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥))))
414eqcomd 2767 . . . . . . 7 ((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) → (𝑥 cyclShift 𝑘) = 𝑋)
4241adantr 472 . . . . . 6 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑥 cyclShift 𝑘) = 𝑋)
43 oveq1 6822 . . . . . . . 8 (𝑋 = (𝑥 cyclShift 𝑘) → (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) = ((𝑥 cyclShift 𝑘) cyclShift ((♯‘𝑥) − 𝑘)))
4443eqcoms 2769 . . . . . . 7 ((𝑥 cyclShift 𝑘) = 𝑋 → (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) = ((𝑥 cyclShift 𝑘) cyclShift ((♯‘𝑥) − 𝑘)))
45 elfzelz 12556 . . . . . . . 8 (𝑘 ∈ (0...(♯‘𝑥)) → 𝑘 ∈ ℤ)
46 2cshwid 13781 . . . . . . . 8 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ ℤ) → ((𝑥 cyclShift 𝑘) cyclShift ((♯‘𝑥) − 𝑘)) = 𝑥)
4745, 46sylan2 492 . . . . . . 7 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥))) → ((𝑥 cyclShift 𝑘) cyclShift ((♯‘𝑥) − 𝑘)) = 𝑥)
4844, 47sylan9eqr 2817 . . . . . 6 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑘 ∈ (0...(♯‘𝑥))) ∧ (𝑥 cyclShift 𝑘) = 𝑋) → (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) = 𝑥)
4940, 42, 48syl2anc 696 . . . . 5 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) = 𝑥)
5049eqcomd 2767 . . . 4 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → 𝑥 = (𝑋 cyclShift ((♯‘𝑥) − 𝑘)))
5150anim1i 593 . . 3 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → (𝑥 = (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
527eleclclwwlknlem1 27213 . . 3 ((((♯‘𝑥) − 𝑘) ∈ (0...𝑁) ∧ (𝑥𝑊𝑋𝑊)) → ((𝑥 = (𝑋 cyclShift ((♯‘𝑥) − 𝑘)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚)))
5327, 51, 52sylc 65 . 2 ((((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) ∧ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)) → ∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚))
549, 53impbida 913 1 (((𝑘 ∈ (0...𝑁) ∧ 𝑋 = (𝑥 cyclShift 𝑘)) ∧ (𝑋𝑊𝑥𝑊)) → (∃𝑚 ∈ (0...𝑁)𝑌 = (𝑥 cyclShift 𝑚) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2140  ∃wrex 3052  ‘cfv 6050  (class class class)co 6815  0cc0 10149   − cmin 10479  ℤcz 11590  ...cfz 12540  ♯chash 13332  Word cword 13498   cyclShift ccsh 13755  Vtxcvtx 26095   ClWWalksN cclwwlkn 27169 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-sup 8516  df-inf 8517  df-card 8976  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-n0 11506  df-z 11591  df-uz 11901  df-rp 12047  df-fz 12541  df-fzo 12681  df-fl 12808  df-mod 12884  df-hash 13333  df-word 13506  df-concat 13508  df-substr 13510  df-csh 13756  df-clwwlk 27127  df-clwwlkn 27171 This theorem is referenced by:  eleclclwwlkn  27229
 Copyright terms: Public domain W3C validator