Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleclclwwlknlem1 Structured version   Visualization version   GIF version

Theorem eleclclwwlknlem1 27215
 Description: Lemma 1 for eleclclwwlkn 27231. (Contributed by Alexander van der Vekens, 11-May-2018.) (Revised by AV, 30-Apr-2021.)
Hypothesis
Ref Expression
erclwwlkn1.w 𝑊 = (𝑁 ClWWalksN 𝐺)
Assertion
Ref Expression
eleclclwwlknlem1 ((𝐾 ∈ (0...𝑁) ∧ (𝑋𝑊𝑌𝑊)) → ((𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛)))
Distinct variable groups:   𝑚,𝑛,𝐺   𝑚,𝐾,𝑛   𝑚,𝑁,𝑛   𝑚,𝑋,𝑛   𝑚,𝑌,𝑛   𝑚,𝑍,𝑛
Allowed substitution hints:   𝑊(𝑚,𝑛)

Proof of Theorem eleclclwwlknlem1
StepHypRef Expression
1 eqid 2770 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
21clwwlknbp 27187 . . . . . . 7 (𝑌 ∈ (𝑁 ClWWalksN 𝐺) → (𝑌 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑌) = 𝑁))
3 erclwwlkn1.w . . . . . . 7 𝑊 = (𝑁 ClWWalksN 𝐺)
42, 3eleq2s 2867 . . . . . 6 (𝑌𝑊 → (𝑌 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑌) = 𝑁))
54adantl 467 . . . . 5 ((𝑋𝑊𝑌𝑊) → (𝑌 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑌) = 𝑁))
65adantl 467 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ (𝑋𝑊𝑌𝑊)) → (𝑌 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑌) = 𝑁))
76adantr 466 . . 3 (((𝐾 ∈ (0...𝑁) ∧ (𝑋𝑊𝑌𝑊)) ∧ (𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚))) → (𝑌 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑌) = 𝑁))
8 simpl 468 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ (𝑋𝑊𝑌𝑊)) → 𝐾 ∈ (0...𝑁))
98adantr 466 . . . 4 (((𝐾 ∈ (0...𝑁) ∧ (𝑋𝑊𝑌𝑊)) ∧ (𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚))) → 𝐾 ∈ (0...𝑁))
10 simpl 468 . . . . 5 ((𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚)) → 𝑋 = (𝑌 cyclShift 𝐾))
1110adantl 467 . . . 4 (((𝐾 ∈ (0...𝑁) ∧ (𝑋𝑊𝑌𝑊)) ∧ (𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚))) → 𝑋 = (𝑌 cyclShift 𝐾))
12 simprr 748 . . . 4 (((𝐾 ∈ (0...𝑁) ∧ (𝑋𝑊𝑌𝑊)) ∧ (𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚))) → ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚))
139, 11, 123jca 1121 . . 3 (((𝐾 ∈ (0...𝑁) ∧ (𝑋𝑊𝑌𝑊)) ∧ (𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚))) → (𝐾 ∈ (0...𝑁) ∧ 𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚)))
14 2cshwcshw 13779 . . 3 ((𝑌 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑌) = 𝑁) → ((𝐾 ∈ (0...𝑁) ∧ 𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛)))
157, 13, 14sylc 65 . 2 (((𝐾 ∈ (0...𝑁) ∧ (𝑋𝑊𝑌𝑊)) ∧ (𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚))) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))
1615ex 397 1 ((𝐾 ∈ (0...𝑁) ∧ (𝑋𝑊𝑌𝑊)) → ((𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∧ w3a 1070   = wceq 1630   ∈ wcel 2144  ∃wrex 3061  ‘cfv 6031  (class class class)co 6792  0cc0 10137  ...cfz 12532  ♯chash 13320  Word cword 13486   cyclShift ccsh 13742  Vtxcvtx 26094   ClWWalksN cclwwlkn 27171 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-inf 8504  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-hash 13321  df-word 13494  df-concat 13496  df-substr 13498  df-csh 13743  df-clwwlk 27129  df-clwwlkn 27173 This theorem is referenced by:  eleclclwwlknlem2  27216
 Copyright terms: Public domain W3C validator