![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elec1cnvxrn2 | Structured version Visualization version GIF version |
Description: Elementhood in the converse range Cartesian product coset of 𝐴. (Contributed by Peter Mazsa, 11-Jul-2021.) |
Ref | Expression |
---|---|
elec1cnvxrn2 | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ [𝐴]◡(𝑅 ⋉ 𝑆) ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝐵𝑅𝑦 ∧ 𝐵𝑆𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5661 | . . 3 ⊢ Rel ◡(𝑅 ⋉ 𝑆) | |
2 | relelec 7954 | . . 3 ⊢ (Rel ◡(𝑅 ⋉ 𝑆) → (𝐵 ∈ [𝐴]◡(𝑅 ⋉ 𝑆) ↔ 𝐴◡(𝑅 ⋉ 𝑆)𝐵)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐵 ∈ [𝐴]◡(𝑅 ⋉ 𝑆) ↔ 𝐴◡(𝑅 ⋉ 𝑆)𝐵) |
4 | br1cnvxrn2 34477 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴◡(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝐵𝑅𝑦 ∧ 𝐵𝑆𝑧))) | |
5 | 3, 4 | syl5bb 272 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ [𝐴]◡(𝑅 ⋉ 𝑆) ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝐵𝑅𝑦 ∧ 𝐵𝑆𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1072 = wceq 1632 ∃wex 1853 ∈ wcel 2139 〈cop 4327 class class class wbr 4804 ◡ccnv 5265 Rel wrel 5271 [cec 7909 ⋉ cxrn 34295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fo 6055 df-fv 6057 df-1st 7333 df-2nd 7334 df-ec 7913 df-xrn 34456 |
This theorem is referenced by: rnxrn 34479 |
Copyright terms: Public domain | W3C validator |