![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eldmrexrnb | Structured version Visualization version GIF version |
Description: For any element in the domain of a function, there is an element in the range of the function which is the value of the function at that element. Because of the definition df-fv 6039 of the value of a function, the theorem is only valid in general if the empty set is not contained in the range of the function (the implication "to the right" is always valid). Indeed, with the definition df-fv 6039 of the value of a function, (𝐹‘𝑌) = ∅ may mean that the value of 𝐹 at 𝑌 is the empty set or that 𝐹 is not defined at 𝑌. (Contributed by Alexander van der Vekens, 17-Dec-2017.) |
Ref | Expression |
---|---|
eldmrexrnb | ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 ↔ ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmrexrn 6508 | . . 3 ⊢ (Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) | |
2 | 1 | adantr 466 | . 2 ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) |
3 | eleq1 2838 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑌) → (𝑥 ∈ ran 𝐹 ↔ (𝐹‘𝑌) ∈ ran 𝐹)) | |
4 | elnelne2 3057 | . . . . . . . . 9 ⊢ (((𝐹‘𝑌) ∈ ran 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝐹‘𝑌) ≠ ∅) | |
5 | n0 4078 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑌) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝐹‘𝑌)) | |
6 | elfvdm 6361 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ (𝐹‘𝑌) → 𝑌 ∈ dom 𝐹) | |
7 | 6 | exlimiv 2010 | . . . . . . . . . 10 ⊢ (∃𝑦 𝑦 ∈ (𝐹‘𝑌) → 𝑌 ∈ dom 𝐹) |
8 | 5, 7 | sylbi 207 | . . . . . . . . 9 ⊢ ((𝐹‘𝑌) ≠ ∅ → 𝑌 ∈ dom 𝐹) |
9 | 4, 8 | syl 17 | . . . . . . . 8 ⊢ (((𝐹‘𝑌) ∈ ran 𝐹 ∧ ∅ ∉ ran 𝐹) → 𝑌 ∈ dom 𝐹) |
10 | 9 | expcom 398 | . . . . . . 7 ⊢ (∅ ∉ ran 𝐹 → ((𝐹‘𝑌) ∈ ran 𝐹 → 𝑌 ∈ dom 𝐹)) |
11 | 10 | adantl 467 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → ((𝐹‘𝑌) ∈ ran 𝐹 → 𝑌 ∈ dom 𝐹)) |
12 | 11 | com12 32 | . . . . 5 ⊢ ((𝐹‘𝑌) ∈ ran 𝐹 → ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → 𝑌 ∈ dom 𝐹)) |
13 | 3, 12 | syl6bi 243 | . . . 4 ⊢ (𝑥 = (𝐹‘𝑌) → (𝑥 ∈ ran 𝐹 → ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → 𝑌 ∈ dom 𝐹))) |
14 | 13 | com13 88 | . . 3 ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑥 ∈ ran 𝐹 → (𝑥 = (𝐹‘𝑌) → 𝑌 ∈ dom 𝐹))) |
15 | 14 | rexlimdv 3178 | . 2 ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌) → 𝑌 ∈ dom 𝐹)) |
16 | 2, 15 | impbid 202 | 1 ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 ↔ ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∃wex 1852 ∈ wcel 2145 ≠ wne 2943 ∉ wnel 3046 ∃wrex 3062 ∅c0 4063 dom cdm 5249 ran crn 5250 Fun wfun 6025 ‘cfv 6031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-iota 5994 df-fun 6033 df-fn 6034 df-fv 6039 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |