Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph2 Structured version   Visualization version   GIF version

Theorem eldioph2 37642
Description: Construct a Diophantine set from a polynomial with witness variables drawn from any set whatsoever, via mzpcompact2 37632. (Contributed by Stefan O'Rear, 8-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.)
Assertion
Ref Expression
eldioph2 ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑡,𝑃,𝑢   𝑡,𝑆,𝑢   𝑡,𝑁,𝑢

Proof of Theorem eldioph2
Dummy variables 𝑎 𝑏 𝑐 𝑒 𝑔 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mzpcompact2 37632 . . 3 (𝑃 ∈ (mzPoly‘𝑆) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑆𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))))
213ad2ant3 1104 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑆𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))))
3 fveq1 6228 . . . . . . . . . 10 (𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎))) → (𝑃𝑢) = ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢))
43eqeq1d 2653 . . . . . . . . 9 (𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎))) → ((𝑃𝑢) = 0 ↔ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0))
54anbi2d 740 . . . . . . . 8 (𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎))) → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0) ↔ (𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)))
65rexbidv 3081 . . . . . . 7 (𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎))) → (∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0) ↔ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)))
76abbidv 2770 . . . . . 6 (𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)})
87ad2antll 765 . . . . 5 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ (𝑎𝑆𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎))))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)})
9 simplll 813 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → 𝑁 ∈ ℕ0)
10 simplrl 817 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → 𝑎 ∈ Fin)
11 fzfi 12811 . . . . . . . . . . . 12 (1...𝑁) ∈ Fin
12 unfi 8268 . . . . . . . . . . . 12 ((𝑎 ∈ Fin ∧ (1...𝑁) ∈ Fin) → (𝑎 ∪ (1...𝑁)) ∈ Fin)
1310, 11, 12sylancl 695 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → (𝑎 ∪ (1...𝑁)) ∈ Fin)
14 ssun2 3810 . . . . . . . . . . . 12 (1...𝑁) ⊆ (𝑎 ∪ (1...𝑁))
1514a1i 11 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → (1...𝑁) ⊆ (𝑎 ∪ (1...𝑁)))
16 eldioph2lem1 37640 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∪ (1...𝑁)) ∈ Fin ∧ (1...𝑁) ⊆ (𝑎 ∪ (1...𝑁))) → ∃𝑐 ∈ (ℤ𝑁)∃𝑑 ∈ V (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
179, 13, 15, 16syl3anc 1366 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → ∃𝑐 ∈ (ℤ𝑁)∃𝑑 ∈ V (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
18 f1ococnv2 6201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → (𝑑𝑑) = ( I ↾ (𝑎 ∪ (1...𝑁))))
1918ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑑𝑑) = ( I ↾ (𝑎 ∪ (1...𝑁))))
2019reseq1d 5427 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ((𝑑𝑑) ↾ 𝑎) = (( I ↾ (𝑎 ∪ (1...𝑁))) ↾ 𝑎))
21 ssun1 3809 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑎 ⊆ (𝑎 ∪ (1...𝑁))
22 resabs1 5462 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 ⊆ (𝑎 ∪ (1...𝑁)) → (( I ↾ (𝑎 ∪ (1...𝑁))) ↾ 𝑎) = ( I ↾ 𝑎))
2321, 22ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( I ↾ (𝑎 ∪ (1...𝑁))) ↾ 𝑎) = ( I ↾ 𝑎)
2420, 23syl6req 2702 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ( I ↾ 𝑎) = ((𝑑𝑑) ↾ 𝑎))
25 resco 5677 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑𝑑) ↾ 𝑎) = (𝑑 ∘ (𝑑𝑎))
2624, 25syl6eq 2701 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ( I ↾ 𝑎) = (𝑑 ∘ (𝑑𝑎)))
2726adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑𝑚 𝑆)) → ( I ↾ 𝑎) = (𝑑 ∘ (𝑑𝑎)))
2827coeq2d 5317 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑𝑚 𝑆)) → (𝑒 ∘ ( I ↾ 𝑎)) = (𝑒 ∘ (𝑑 ∘ (𝑑𝑎))))
29 coires1 5691 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 ∘ ( I ↾ 𝑎)) = (𝑒𝑎)
30 coass 5692 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑒𝑑) ∘ (𝑑𝑎)) = (𝑒 ∘ (𝑑 ∘ (𝑑𝑎)))
3130eqcomi 2660 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 ∘ (𝑑 ∘ (𝑑𝑎))) = ((𝑒𝑑) ∘ (𝑑𝑎))
3228, 29, 313eqtr3g 2708 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑𝑚 𝑆)) → (𝑒𝑎) = ((𝑒𝑑) ∘ (𝑑𝑎)))
3332fveq2d 6233 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑𝑚 𝑆)) → (𝑏‘(𝑒𝑎)) = (𝑏‘((𝑒𝑑) ∘ (𝑑𝑎))))
34 ovexd 6720 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑𝑚 𝑆)) → (1...𝑐) ∈ V)
35 simpr 476 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑𝑚 𝑆)) → 𝑒 ∈ (ℤ ↑𝑚 𝑆))
36 f1of1 6174 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → 𝑑:(1...𝑐)–1-1→(𝑎 ∪ (1...𝑁)))
3736ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑑:(1...𝑐)–1-1→(𝑎 ∪ (1...𝑁)))
38 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → 𝑎𝑆)
39 simprr 811 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) → (1...𝑁) ⊆ 𝑆)
4039ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → (1...𝑁) ⊆ 𝑆)
4138, 40unssd 3822 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → (𝑎 ∪ (1...𝑁)) ⊆ 𝑆)
4241ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑎 ∪ (1...𝑁)) ⊆ 𝑆)
43 f1ss 6144 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑:(1...𝑐)–1-1→(𝑎 ∪ (1...𝑁)) ∧ (𝑎 ∪ (1...𝑁)) ⊆ 𝑆) → 𝑑:(1...𝑐)–1-1𝑆)
4437, 42, 43syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑑:(1...𝑐)–1-1𝑆)
45 f1f 6139 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑑:(1...𝑐)–1-1𝑆𝑑:(1...𝑐)⟶𝑆)
4644, 45syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑑:(1...𝑐)⟶𝑆)
4746adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑𝑚 𝑆)) → 𝑑:(1...𝑐)⟶𝑆)
48 mapco2g 37594 . . . . . . . . . . . . . . . . . . . . . . 23 (((1...𝑐) ∈ V ∧ 𝑒 ∈ (ℤ ↑𝑚 𝑆) ∧ 𝑑:(1...𝑐)⟶𝑆) → (𝑒𝑑) ∈ (ℤ ↑𝑚 (1...𝑐)))
4934, 35, 47, 48syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑𝑚 𝑆)) → (𝑒𝑑) ∈ (ℤ ↑𝑚 (1...𝑐)))
50 coeq1 5312 . . . . . . . . . . . . . . . . . . . . . . . 24 ( = (𝑒𝑑) → ( ∘ (𝑑𝑎)) = ((𝑒𝑑) ∘ (𝑑𝑎)))
5150fveq2d 6233 . . . . . . . . . . . . . . . . . . . . . . 23 ( = (𝑒𝑑) → (𝑏‘( ∘ (𝑑𝑎))) = (𝑏‘((𝑒𝑑) ∘ (𝑑𝑎))))
52 eqid 2651 . . . . . . . . . . . . . . . . . . . . . . 23 ( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎)))) = ( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))
53 fvex 6239 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏‘((𝑒𝑑) ∘ (𝑑𝑎))) ∈ V
5451, 52, 53fvmpt 6321 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑒𝑑) ∈ (ℤ ↑𝑚 (1...𝑐)) → (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)) = (𝑏‘((𝑒𝑑) ∘ (𝑑𝑎))))
5549, 54syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑𝑚 𝑆)) → (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)) = (𝑏‘((𝑒𝑑) ∘ (𝑑𝑎))))
5633, 55eqtr4d 2688 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑𝑚 𝑆)) → (𝑏‘(𝑒𝑎)) = (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))
5756mpteq2dva 4777 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎))) = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑))))
5857fveq1d 6231 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))‘𝑢))
5958eqeq1d 2653 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0 ↔ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))‘𝑢) = 0))
6059anbi2d 740 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0) ↔ (𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))‘𝑢) = 0)))
6160rexbidv 3081 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0) ↔ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))‘𝑢) = 0)))
6261abbidv 2770 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))‘𝑢) = 0)})
63 simplrl 817 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) → 𝑆 ∈ V)
6463ad3antrrr 766 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑆 ∈ V)
65 simprr 811 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))
66 diophrw 37639 . . . . . . . . . . . . . . 15 ((𝑆 ∈ V ∧ 𝑑:(1...𝑐)–1-1𝑆 ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))‘𝑢) = 0)} = {𝑡 ∣ ∃𝑔 ∈ (ℕ0𝑚 (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘𝑔) = 0)})
6764, 44, 65, 66syl3anc 1366 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))‘𝑢) = 0)} = {𝑡 ∣ ∃𝑔 ∈ (ℕ0𝑚 (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘𝑔) = 0)})
6862, 67eqtrd 2685 . . . . . . . . . . . . 13 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} = {𝑡 ∣ ∃𝑔 ∈ (ℕ0𝑚 (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘𝑔) = 0)})
69 simp-5l 825 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑁 ∈ ℕ0)
70 simplrl 817 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑐 ∈ (ℤ𝑁))
71 ovexd 6720 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (1...𝑐) ∈ V)
72 simplrr 818 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → 𝑏 ∈ (mzPoly‘𝑎))
7372ad2antrr 762 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑏 ∈ (mzPoly‘𝑎))
74 f1ocnv 6187 . . . . . . . . . . . . . . . . . 18 (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → 𝑑:(𝑎 ∪ (1...𝑁))–1-1-onto→(1...𝑐))
75 f1of 6175 . . . . . . . . . . . . . . . . . 18 (𝑑:(𝑎 ∪ (1...𝑁))–1-1-onto→(1...𝑐) → 𝑑:(𝑎 ∪ (1...𝑁))⟶(1...𝑐))
7674, 75syl 17 . . . . . . . . . . . . . . . . 17 (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → 𝑑:(𝑎 ∪ (1...𝑁))⟶(1...𝑐))
77 fssres 6108 . . . . . . . . . . . . . . . . 17 ((𝑑:(𝑎 ∪ (1...𝑁))⟶(1...𝑐) ∧ 𝑎 ⊆ (𝑎 ∪ (1...𝑁))) → (𝑑𝑎):𝑎⟶(1...𝑐))
7876, 21, 77sylancl 695 . . . . . . . . . . . . . . . 16 (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → (𝑑𝑎):𝑎⟶(1...𝑐))
7978ad2antrl 764 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑑𝑎):𝑎⟶(1...𝑐))
80 mzprename 37629 . . . . . . . . . . . . . . 15 (((1...𝑐) ∈ V ∧ 𝑏 ∈ (mzPoly‘𝑎) ∧ (𝑑𝑎):𝑎⟶(1...𝑐)) → ( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎)))) ∈ (mzPoly‘(1...𝑐)))
8171, 73, 79, 80syl3anc 1366 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎)))) ∈ (mzPoly‘(1...𝑐)))
82 eldioph 37638 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑐 ∈ (ℤ𝑁) ∧ ( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎)))) ∈ (mzPoly‘(1...𝑐))) → {𝑡 ∣ ∃𝑔 ∈ (ℕ0𝑚 (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘𝑔) = 0)} ∈ (Dioph‘𝑁))
8369, 70, 81, 82syl3anc 1366 . . . . . . . . . . . . 13 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑔 ∈ (ℕ0𝑚 (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ (( ∈ (ℤ ↑𝑚 (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘𝑔) = 0)} ∈ (Dioph‘𝑁))
8468, 83eqeltrd 2730 . . . . . . . . . . . 12 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁))
8584ex 449 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) → ((𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁)))
8685rexlimdvva 3067 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → (∃𝑐 ∈ (ℤ𝑁)∃𝑑 ∈ V (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁)))
8717, 86mpd 15 . . . . . . . . 9 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁))
8887exp31 629 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) → ((𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎)) → (𝑎𝑆 → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁))))
89883adant3 1101 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → ((𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎)) → (𝑎𝑆 → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁))))
9089imp31 447 . . . . . 6 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁))
9190adantrr 753 . . . . 5 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ (𝑎𝑆𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎))))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁))
928, 91eqeltrd 2730 . . . 4 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ (𝑎𝑆𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎))))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
9392ex 449 . . 3 (((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) → ((𝑎𝑆𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁)))
9493rexlimdvva 3067 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑆𝑃 = (𝑒 ∈ (ℤ ↑𝑚 𝑆) ↦ (𝑏‘(𝑒𝑎)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁)))
952, 94mpd 15 1 ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0𝑚 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  {cab 2637  wrex 2942  Vcvv 3231  cun 3605  wss 3607  cmpt 4762   I cid 5052  ccnv 5142  cres 5145  ccom 5147  wf 5922  1-1wf1 5923  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  Fincfn 7997  0cc0 9974  1c1 9975  0cn0 11330  cz 11415  cuz 11725  ...cfz 12364  mzPolycmzp 37602  Diophcdioph 37635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-hash 13158  df-mzpcl 37603  df-mzp 37604  df-dioph 37636
This theorem is referenced by:  eldioph2b  37643  diophin  37653  diophun  37654
  Copyright terms: Public domain W3C validator