MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldifvsn Structured version   Visualization version   GIF version

Theorem eldifvsn 4472
Description: A set is an element of the universal class excluding a singleton iff it is not the singleton element. (Contributed by AV, 7-Apr-2019.)
Assertion
Ref Expression
eldifvsn (𝐴𝑉 → (𝐴 ∈ (V ∖ {𝐵}) ↔ 𝐴𝐵))

Proof of Theorem eldifvsn
StepHypRef Expression
1 elex 3352 . . 3 (𝐴𝑉𝐴 ∈ V)
21biantrurd 530 . 2 (𝐴𝑉 → (𝐴𝐵 ↔ (𝐴 ∈ V ∧ 𝐴𝐵)))
3 eldifsn 4462 . 2 (𝐴 ∈ (V ∖ {𝐵}) ↔ (𝐴 ∈ V ∧ 𝐴𝐵))
42, 3syl6rbbr 279 1 (𝐴𝑉 → (𝐴 ∈ (V ∖ {𝐵}) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wcel 2139  wne 2932  Vcvv 3340  cdif 3712  {csn 4321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-v 3342  df-dif 3718  df-sn 4322
This theorem is referenced by:  cnvimadfsn  7473
  Copyright terms: Public domain W3C validator