![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eldifvsn | Structured version Visualization version GIF version |
Description: A set is an element of the universal class excluding a singleton iff it is not the singleton element. (Contributed by AV, 7-Apr-2019.) |
Ref | Expression |
---|---|
eldifvsn | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (V ∖ {𝐵}) ↔ 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3352 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | 1 | biantrurd 530 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≠ 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 ≠ 𝐵))) |
3 | eldifsn 4462 | . 2 ⊢ (𝐴 ∈ (V ∖ {𝐵}) ↔ (𝐴 ∈ V ∧ 𝐴 ≠ 𝐵)) | |
4 | 2, 3 | syl6rbbr 279 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (V ∖ {𝐵}) ↔ 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2139 ≠ wne 2932 Vcvv 3340 ∖ cdif 3712 {csn 4321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-v 3342 df-dif 3718 df-sn 4322 |
This theorem is referenced by: cnvimadfsn 7473 |
Copyright terms: Public domain | W3C validator |