![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elcnvcnvintab | Structured version Visualization version GIF version |
Description: Two ways of saying a set is an element of the converse of the converse of the intersection of a class. (Contributed by RP, 20-Aug-2020.) |
Ref | Expression |
---|---|
elcnvcnvintab | ⊢ (𝐴 ∈ ◡◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv 5727 | . . . 4 ⊢ ◡◡∩ {𝑥 ∣ 𝜑} = (∩ {𝑥 ∣ 𝜑} ∩ (V × V)) | |
2 | incom 3954 | . . . 4 ⊢ (∩ {𝑥 ∣ 𝜑} ∩ (V × V)) = ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) | |
3 | 1, 2 | eqtri 2792 | . . 3 ⊢ ◡◡∩ {𝑥 ∣ 𝜑} = ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) |
4 | 3 | eleq2i 2841 | . 2 ⊢ (𝐴 ∈ ◡◡∩ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ ((V × V) ∩ ∩ {𝑥 ∣ 𝜑})) |
5 | elinintab 38400 | . 2 ⊢ (𝐴 ∈ ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) | |
6 | 4, 5 | bitri 264 | 1 ⊢ (𝐴 ∈ ◡◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∀wal 1628 ∈ wcel 2144 {cab 2756 Vcvv 3349 ∩ cin 3720 ∩ cint 4609 × cxp 5247 ◡ccnv 5248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-int 4610 df-br 4785 df-opab 4845 df-xp 5255 df-rel 5256 df-cnv 5257 |
This theorem is referenced by: cnvcnvintabd 38425 |
Copyright terms: Public domain | W3C validator |