![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elcls2 | Structured version Visualization version GIF version |
Description: Membership in a closure. (Contributed by NM, 5-Mar-2007.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
elcls2 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | clsss3 21083 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
3 | ssel 3744 | . . . 4 ⊢ (((cls‘𝐽)‘𝑆) ⊆ 𝑋 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → 𝑃 ∈ 𝑋)) | |
4 | 3 | pm4.71rd 544 | . . 3 ⊢ (((cls‘𝐽)‘𝑆) ⊆ 𝑋 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ (𝑃 ∈ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))) |
5 | 2, 4 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ (𝑃 ∈ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))) |
6 | 1 | elcls 21097 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅))) |
7 | 6 | 3expa 1110 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅))) |
8 | 7 | pm5.32da 560 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝑃 ∈ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅)))) |
9 | 5, 8 | bitrd 268 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 ∀wral 3060 ∩ cin 3720 ⊆ wss 3721 ∅c0 4061 ∪ cuni 4572 ‘cfv 6031 Topctop 20917 clsccl 21042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-top 20918 df-cld 21043 df-ntr 21044 df-cls 21045 |
This theorem is referenced by: 1stcelcls 21484 tsmsgsum 22161 |
Copyright terms: Public domain | W3C validator |