MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcls Structured version   Visualization version   GIF version

Theorem elcls 20858
Description: Membership in a closure. Theorem 6.5(a) of [Munkres] p. 95. (Contributed by NM, 22-Feb-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
elcls ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑃   𝑥,𝑆   𝑥,𝑋

Proof of Theorem elcls
StepHypRef Expression
1 clscld.1 . . . . . . . 8 𝑋 = 𝐽
21cmclsopn 20847 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽)
323adant3 1079 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽)
43adantr 481 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽)
5 eldif 3577 . . . . . . 7 (𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ↔ (𝑃𝑋 ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))
65biimpri 218 . . . . . 6 ((𝑃𝑋 ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))
763ad2antl3 1223 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))
8 simpr 477 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆𝑋)
91sscls 20841 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
108, 9ssind 3829 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ (𝑋 ∩ ((cls‘𝐽)‘𝑆)))
11 dfin4 3859 . . . . . . . . . 10 (𝑋 ∩ ((cls‘𝐽)‘𝑆)) = (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))
1210, 11syl6sseq 3643 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘𝑆))))
13 reldisj 4011 . . . . . . . . . 10 (𝑆𝑋 → ((𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅ ↔ 𝑆 ⊆ (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))))
1413adantl 482 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅ ↔ 𝑆 ⊆ (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))))
1512, 14mpbird 247 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅)
16 nne 2795 . . . . . . . . 9 (¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅ ↔ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) = ∅)
17 incom 3797 . . . . . . . . . 10 ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) = (𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))
1817eqeq1i 2625 . . . . . . . . 9 (((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) = ∅ ↔ (𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅)
1916, 18bitri 264 . . . . . . . 8 (¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅ ↔ (𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅)
2015, 19sylibr 224 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅)
21203adant3 1079 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅)
2221adantr 481 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅)
23 eleq2 2688 . . . . . . 7 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → (𝑃𝑥𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆))))
24 ineq1 3799 . . . . . . . . 9 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → (𝑥𝑆) = ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆))
2524neeq1d 2850 . . . . . . . 8 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → ((𝑥𝑆) ≠ ∅ ↔ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅))
2625notbid 308 . . . . . . 7 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → (¬ (𝑥𝑆) ≠ ∅ ↔ ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅))
2723, 26anbi12d 746 . . . . . 6 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → ((𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅) ↔ (𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∧ ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅)))
2827rspcev 3304 . . . . 5 (((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽 ∧ (𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∧ ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅)) → ∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅))
294, 7, 22, 28syl12anc 1322 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅))
30 incom 3797 . . . . . . . . . . . . 13 (𝑆𝑥) = (𝑥𝑆)
3130eqeq1i 2625 . . . . . . . . . . . 12 ((𝑆𝑥) = ∅ ↔ (𝑥𝑆) = ∅)
32 df-ne 2792 . . . . . . . . . . . . 13 ((𝑥𝑆) ≠ ∅ ↔ ¬ (𝑥𝑆) = ∅)
3332con2bii 347 . . . . . . . . . . . 12 ((𝑥𝑆) = ∅ ↔ ¬ (𝑥𝑆) ≠ ∅)
3431, 33bitri 264 . . . . . . . . . . 11 ((𝑆𝑥) = ∅ ↔ ¬ (𝑥𝑆) ≠ ∅)
351opncld 20818 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (𝑋𝑥) ∈ (Clsd‘𝐽))
3635adantlr 750 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) → (𝑋𝑥) ∈ (Clsd‘𝐽))
3736adantr 481 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ (𝑆𝑥) = ∅) → (𝑋𝑥) ∈ (Clsd‘𝐽))
38 reldisj 4011 . . . . . . . . . . . . . . . . . 18 (𝑆𝑋 → ((𝑆𝑥) = ∅ ↔ 𝑆 ⊆ (𝑋𝑥)))
3938biimpa 501 . . . . . . . . . . . . . . . . 17 ((𝑆𝑋 ∧ (𝑆𝑥) = ∅) → 𝑆 ⊆ (𝑋𝑥))
4039adantll 749 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑆𝑥) = ∅) → 𝑆 ⊆ (𝑋𝑥))
4140adantlr 750 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ (𝑆𝑥) = ∅) → 𝑆 ⊆ (𝑋𝑥))
421clsss2 20857 . . . . . . . . . . . . . . 15 (((𝑋𝑥) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ (𝑋𝑥)) → ((cls‘𝐽)‘𝑆) ⊆ (𝑋𝑥))
4337, 41, 42syl2anc 692 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ (𝑆𝑥) = ∅) → ((cls‘𝐽)‘𝑆) ⊆ (𝑋𝑥))
4443sseld 3594 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ (𝑆𝑥) = ∅) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → 𝑃 ∈ (𝑋𝑥)))
45 eldifn 3725 . . . . . . . . . . . . 13 (𝑃 ∈ (𝑋𝑥) → ¬ 𝑃𝑥)
4644, 45syl6 35 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ (𝑆𝑥) = ∅) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → ¬ 𝑃𝑥))
4746con2d 129 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ (𝑆𝑥) = ∅) → (𝑃𝑥 → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))
4834, 47sylan2br 493 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ ¬ (𝑥𝑆) ≠ ∅) → (𝑃𝑥 → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))
4948exp31 629 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥𝐽 → (¬ (𝑥𝑆) ≠ ∅ → (𝑃𝑥 → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))))
5049com34 91 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥𝐽 → (𝑃𝑥 → (¬ (𝑥𝑆) ≠ ∅ → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))))
5150imp4a 613 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥𝐽 → ((𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅) → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆))))
5251rexlimdv 3026 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅) → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))
5352imp 445 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅)) → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆))
54533adantl3 1217 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅)) → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆))
5529, 54impbida 876 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅)))
56 rexanali 2995 . . 3 (∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅) ↔ ¬ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
5755, 56syl6bb 276 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ¬ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
5857con4bid 307 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791  wral 2909  wrex 2910  cdif 3564  cin 3566  wss 3567  c0 3907   cuni 4427  cfv 5876  Topctop 20679  Clsdccld 20801  clsccl 20803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-top 20680  df-cld 20804  df-ntr 20805  df-cls 20806
This theorem is referenced by:  elcls2  20859  clsndisj  20860  elcls3  20868  neindisj2  20908  islp3  20931  lmcls  21087  1stccnp  21246  txcls  21388  dfac14lem  21401  fclsopn  21799  metdseq0  22638  qndenserrn  40282
  Copyright terms: Public domain W3C validator