![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elcarsgss | Structured version Visualization version GIF version |
Description: Caratheodory measurable sets are subsets of the universe. (Contributed by Thierry Arnoux, 21-May-2020.) |
Ref | Expression |
---|---|
carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
difelcarsg.1 | ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) |
Ref | Expression |
---|---|
elcarsgss | ⊢ (𝜑 → 𝐴 ⊆ 𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | carsgval.1 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
2 | carsgval.2 | . . . 4 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
3 | 1, 2 | carsgcl 30700 | . . 3 ⊢ (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑂) |
4 | difelcarsg.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (toCaraSiga‘𝑀)) | |
5 | 3, 4 | sseldd 3751 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑂) |
6 | 5 | elpwid 4307 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝑂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2144 ⊆ wss 3721 𝒫 cpw 4295 ⟶wf 6027 ‘cfv 6031 (class class class)co 6792 0cc0 10137 +∞cpnf 10272 [,]cicc 12382 toCaraSigaccarsg 30697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-carsg 30698 |
This theorem is referenced by: unelcarsg 30708 difelcarsg2 30709 |
Copyright terms: Public domain | W3C validator |