Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elbigolo1 Structured version   Visualization version   GIF version

Theorem elbigolo1 42861
Description: A function (into the positive reals) is of order G(x) iff the quotient of the function and G(x) (also a function into the positive reals) is an eventually upper bounded function. (Contributed by AV, 20-May-2020.)
Assertion
Ref Expression
elbigolo1 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 /f 𝐺) ∈ ≤𝑂(1)))

Proof of Theorem elbigolo1
Dummy variables 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+)
2 rpssre 12036 . . . . . . . . . . . . 13 + ⊆ ℝ
32a1i 11 . . . . . . . . . . . 12 (𝐹:𝐴⟶ℝ+ → ℝ+ ⊆ ℝ)
41, 3fssd 6218 . . . . . . . . . . 11 (𝐹:𝐴⟶ℝ+𝐹:𝐴⟶ℝ)
543ad2ant3 1130 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐹:𝐴⟶ℝ)
65adantr 472 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐹:𝐴⟶ℝ)
76ffvelrnda 6522 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
8 simplrr 820 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → 𝑚 ∈ ℝ)
9 simpl2 1230 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐺:𝐴⟶ℝ+)
109ffvelrnda 6522 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → (𝐺𝑦) ∈ ℝ+)
1110rpregt0d 12071 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐺𝑦) ∈ ℝ ∧ 0 < (𝐺𝑦)))
127, 8, 113jca 1123 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐹𝑦) ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ((𝐺𝑦) ∈ ℝ ∧ 0 < (𝐺𝑦))))
13 ledivmul2 11094 . . . . . . . 8 (((𝐹𝑦) ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ((𝐺𝑦) ∈ ℝ ∧ 0 < (𝐺𝑦))) → (((𝐹𝑦) / (𝐺𝑦)) ≤ 𝑚 ↔ (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
1413bicomd 213 . . . . . . 7 (((𝐹𝑦) ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ((𝐺𝑦) ∈ ℝ ∧ 0 < (𝐺𝑦))) → ((𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ ((𝐹𝑦) / (𝐺𝑦)) ≤ 𝑚))
1512, 14syl 17 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ ((𝐹𝑦) / (𝐺𝑦)) ≤ 𝑚))
16 id 22 . . . . . . . . . . . . 13 (𝐺:𝐴⟶ℝ+𝐺:𝐴⟶ℝ+)
172a1i 11 . . . . . . . . . . . . 13 (𝐺:𝐴⟶ℝ+ → ℝ+ ⊆ ℝ)
1816, 17fssd 6218 . . . . . . . . . . . 12 (𝐺:𝐴⟶ℝ+𝐺:𝐴⟶ℝ)
19183ad2ant2 1129 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐺:𝐴⟶ℝ)
20 reex 10219 . . . . . . . . . . . . 13 ℝ ∈ V
2120ssex 4954 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
22213ad2ant1 1128 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴 ∈ V)
235, 19, 223jca 1123 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V))
2423adantr 472 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V))
2524adantr 472 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → (𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V))
26 ffun 6209 . . . . . . . . . . . . . . . 16 (𝐺:𝐴⟶ℝ+ → Fun 𝐺)
2726adantl 473 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → Fun 𝐺)
2821anim1i 593 . . . . . . . . . . . . . . . . 17 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → (𝐴 ∈ V ∧ 𝐺:𝐴⟶ℝ+))
2928ancomd 466 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → (𝐺:𝐴⟶ℝ+𝐴 ∈ V))
30 fex 6653 . . . . . . . . . . . . . . . 16 ((𝐺:𝐴⟶ℝ+𝐴 ∈ V) → 𝐺 ∈ V)
3129, 30syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → 𝐺 ∈ V)
32 0red 10233 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → 0 ∈ ℝ)
33 frn 6214 . . . . . . . . . . . . . . . . 17 (𝐺:𝐴⟶ℝ+ → ran 𝐺 ⊆ ℝ+)
34 0nrp 12058 . . . . . . . . . . . . . . . . . . 19 ¬ 0 ∈ ℝ+
35 id 22 . . . . . . . . . . . . . . . . . . . 20 (ran 𝐺 ⊆ ℝ+ → ran 𝐺 ⊆ ℝ+)
3635ssneld 3746 . . . . . . . . . . . . . . . . . . 19 (ran 𝐺 ⊆ ℝ+ → (¬ 0 ∈ ℝ+ → ¬ 0 ∈ ran 𝐺))
3734, 36mpi 20 . . . . . . . . . . . . . . . . . 18 (ran 𝐺 ⊆ ℝ+ → ¬ 0 ∈ ran 𝐺)
38 df-nel 3036 . . . . . . . . . . . . . . . . . 18 (0 ∉ ran 𝐺 ↔ ¬ 0 ∈ ran 𝐺)
3937, 38sylibr 224 . . . . . . . . . . . . . . . . 17 (ran 𝐺 ⊆ ℝ+ → 0 ∉ ran 𝐺)
4033, 39syl 17 . . . . . . . . . . . . . . . 16 (𝐺:𝐴⟶ℝ+ → 0 ∉ ran 𝐺)
4140adantl 473 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → 0 ∉ ran 𝐺)
42 suppdm 42810 . . . . . . . . . . . . . . 15 (((Fun 𝐺𝐺 ∈ V ∧ 0 ∈ ℝ) ∧ 0 ∉ ran 𝐺) → (𝐺 supp 0) = dom 𝐺)
4327, 31, 32, 41, 42syl31anc 1480 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → (𝐺 supp 0) = dom 𝐺)
44 fdm 6212 . . . . . . . . . . . . . . 15 (𝐺:𝐴⟶ℝ+ → dom 𝐺 = 𝐴)
4544adantl 473 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → dom 𝐺 = 𝐴)
4643, 45eqtrd 2794 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → (𝐺 supp 0) = 𝐴)
47463adant3 1127 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐺 supp 0) = 𝐴)
4847eqcomd 2766 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴 = (𝐺 supp 0))
4948adantr 472 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝐴 = (𝐺 supp 0))
5049eleq2d 2825 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝑦𝐴𝑦 ∈ (𝐺 supp 0)))
5150biimpa 502 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → 𝑦 ∈ (𝐺 supp 0))
52 refdivmptfv 42850 . . . . . . . 8 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ (𝐺 supp 0)) → ((𝐹 /f 𝐺)‘𝑦) = ((𝐹𝑦) / (𝐺𝑦)))
5325, 51, 52syl2anc 696 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐹 /f 𝐺)‘𝑦) = ((𝐹𝑦) / (𝐺𝑦)))
5453breq1d 4814 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → (((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚 ↔ ((𝐹𝑦) / (𝐺𝑦)) ≤ 𝑚))
5515, 54bitr4d 271 . . . . 5 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚))
5655imbi2d 329 . . . 4 ((((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑦𝐴) → ((𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) ↔ (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
5756ralbidva 3123 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) ↔ ∀𝑦𝐴 (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
58572rexbidva 3194 . 2 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
59 simp1 1131 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴 ⊆ ℝ)
60 ssid 3765 . . . 4 𝐴𝐴
6160a1i 11 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴𝐴)
62 elbigo2 42856 . . 3 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐴⟶ℝ ∧ 𝐴𝐴)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
6319, 59, 5, 61, 62syl22anc 1478 . 2 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
64 refdivmptf 42846 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ V) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ)
6523, 64syl 17 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ)
6644eqcomd 2766 . . . . . . 7 (𝐺:𝐴⟶ℝ+𝐴 = dom 𝐺)
67663ad2ant2 1129 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴 = dom 𝐺)
68 simpr 479 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → 𝐺:𝐴⟶ℝ+)
6921adantr 472 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → 𝐴 ∈ V)
7068, 69, 30syl2anc 696 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → 𝐺 ∈ V)
7127, 70, 32, 41, 42syl31anc 1480 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+) → (𝐺 supp 0) = dom 𝐺)
72713adant3 1127 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐺 supp 0) = dom 𝐺)
7367, 72eqtr4d 2797 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → 𝐴 = (𝐺 supp 0))
7473feq2d 6192 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → ((𝐹 /f 𝐺):𝐴⟶ℝ ↔ (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ))
7565, 74mpbird 247 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 /f 𝐺):𝐴⟶ℝ)
76 ello12 14446 . . 3 (((𝐹 /f 𝐺):𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → ((𝐹 /f 𝐺) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
7775, 59, 76syl2anc 696 . 2 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → ((𝐹 /f 𝐺) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → ((𝐹 /f 𝐺)‘𝑦) ≤ 𝑚)))
7858, 63, 773bitr4d 300 1 ((𝐴 ⊆ ℝ ∧ 𝐺:𝐴⟶ℝ+𝐹:𝐴⟶ℝ+) → (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 /f 𝐺) ∈ ≤𝑂(1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wnel 3035  wral 3050  wrex 3051  Vcvv 3340  wss 3715   class class class wbr 4804  dom cdm 5266  ran crn 5267  Fun wfun 6043  wf 6045  cfv 6049  (class class class)co 6813   supp csupp 7463  cr 10127  0cc0 10128   · cmul 10133   < clt 10266  cle 10267   / cdiv 10876  +crp 12025  ≤𝑂(1)clo1 14417   /f cfdiv 42841  Οcbigo 42851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-supp 7464  df-er 7911  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-rp 12026  df-ico 12374  df-lo1 14421  df-fdiv 42842  df-bigo 42852
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator