Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elbigofrcl Structured version   Visualization version   GIF version

Theorem elbigofrcl 42862
Description: Reverse closure of the "big-O" function. (Contributed by AV, 16-May-2020.)
Assertion
Ref Expression
elbigofrcl (𝐹 ∈ (Ο‘𝐺) → 𝐺 ∈ (ℝ ↑pm ℝ))

Proof of Theorem elbigofrcl
Dummy variables 𝑔 𝑓 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6361 . 2 (𝐹 ∈ (Ο‘𝐺) → 𝐺 ∈ dom Ο)
2 df-bigo 42860 . . . 4 Ο = (𝑔 ∈ (ℝ ↑pm ℝ) ↦ {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝑔𝑦))})
32dmeqi 5463 . . 3 dom Ο = dom (𝑔 ∈ (ℝ ↑pm ℝ) ↦ {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝑔𝑦))})
4 dmmptg 5776 . . . 4 (∀𝑔 ∈ (ℝ ↑pm ℝ){𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝑔𝑦))} ∈ V → dom (𝑔 ∈ (ℝ ↑pm ℝ) ↦ {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝑔𝑦))}) = (ℝ ↑pm ℝ))
5 ovex 6822 . . . . . 6 (ℝ ↑pm ℝ) ∈ V
65rabex 4943 . . . . 5 {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝑔𝑦))} ∈ V
76a1i 11 . . . 4 (𝑔 ∈ (ℝ ↑pm ℝ) → {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝑔𝑦))} ∈ V)
84, 7mprg 3074 . . 3 dom (𝑔 ∈ (ℝ ↑pm ℝ) ↦ {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝑔𝑦))}) = (ℝ ↑pm ℝ)
93, 8eqtri 2792 . 2 dom Ο = (ℝ ↑pm ℝ)
101, 9syl6eleq 2859 1 (𝐹 ∈ (Ο‘𝐺) → 𝐺 ∈ (ℝ ↑pm ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1630  wcel 2144  wral 3060  wrex 3061  {crab 3064  Vcvv 3349  cin 3720   class class class wbr 4784  cmpt 4861  dom cdm 5249  cfv 6031  (class class class)co 6792  pm cpm 8009  cr 10136   · cmul 10142  +∞cpnf 10272  cle 10276  [,)cico 12381  Οcbigo 42859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-xp 5255  df-rel 5256  df-cnv 5257  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fv 6039  df-ov 6795  df-bigo 42860
This theorem is referenced by:  elbigo  42863  elbigoimp  42868
  Copyright terms: Public domain W3C validator