Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elbasfv Structured version   Visualization version   GIF version

Theorem elbasfv 16127
 Description: Utility theorem: reverse closure for any structure defined as a function. (Contributed by Stefan O'Rear, 24-Aug-2015.)
Hypotheses
Ref Expression
elbasfv.s 𝑆 = (𝐹𝑍)
elbasfv.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
elbasfv (𝑋𝐵𝑍 ∈ V)

Proof of Theorem elbasfv
StepHypRef Expression
1 n0i 4068 . 2 (𝑋𝐵 → ¬ 𝐵 = ∅)
2 elbasfv.s . . . . 5 𝑆 = (𝐹𝑍)
3 fvprc 6326 . . . . 5 𝑍 ∈ V → (𝐹𝑍) = ∅)
42, 3syl5eq 2817 . . . 4 𝑍 ∈ V → 𝑆 = ∅)
54fveq2d 6336 . . 3 𝑍 ∈ V → (Base‘𝑆) = (Base‘∅))
6 elbasfv.b . . 3 𝐵 = (Base‘𝑆)
7 base0 16119 . . 3 ∅ = (Base‘∅)
85, 6, 73eqtr4g 2830 . 2 𝑍 ∈ V → 𝐵 = ∅)
91, 8nsyl2 144 1 (𝑋𝐵𝑍 ∈ V)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   = wceq 1631   ∈ wcel 2145  Vcvv 3351  ∅c0 4063  ‘cfv 6031  Basecbs 16064 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039  df-slot 16068  df-base 16070 This theorem is referenced by:  frmdelbas  17598  symginv  18029  symggen  18097  psgneu  18133  psgnpmtr  18137  coe1sfi  19798  frgpcyg  20137  lindfind  20372  q1pval  24133  r1pval  24136
 Copyright terms: Public domain W3C validator