MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elabrex Structured version   Visualization version   GIF version

Theorem elabrex 6665
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 14-Jan-2014.)
Hypothesis
Ref Expression
elabrex.1 𝐵 ∈ V
Assertion
Ref Expression
elabrex (𝑥𝐴𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Distinct variable groups:   𝑦,𝐵   𝑥,𝑦,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem elabrex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tru 1636 . . . 4
2 csbeq1a 3683 . . . . . . 7 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
32equcoms 2102 . . . . . 6 (𝑧 = 𝑥𝐵 = 𝑧 / 𝑥𝐵)
4 a1tru 1649 . . . . . 6 (𝑧 = 𝑥 → ⊤)
53, 42thd 255 . . . . 5 (𝑧 = 𝑥 → (𝐵 = 𝑧 / 𝑥𝐵 ↔ ⊤))
65rspcev 3449 . . . 4 ((𝑥𝐴 ∧ ⊤) → ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵)
71, 6mpan2 709 . . 3 (𝑥𝐴 → ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵)
8 elabrex.1 . . . 4 𝐵 ∈ V
9 eqeq1 2764 . . . . 5 (𝑦 = 𝐵 → (𝑦 = 𝑧 / 𝑥𝐵𝐵 = 𝑧 / 𝑥𝐵))
109rexbidv 3190 . . . 4 (𝑦 = 𝐵 → (∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵 ↔ ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵))
118, 10elab 3490 . . 3 (𝐵 ∈ {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵} ↔ ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵)
127, 11sylibr 224 . 2 (𝑥𝐴𝐵 ∈ {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵})
13 nfv 1992 . . . 4 𝑧 𝑦 = 𝐵
14 nfcsb1v 3690 . . . . 5 𝑥𝑧 / 𝑥𝐵
1514nfeq2 2918 . . . 4 𝑥 𝑦 = 𝑧 / 𝑥𝐵
162eqeq2d 2770 . . . 4 (𝑥 = 𝑧 → (𝑦 = 𝐵𝑦 = 𝑧 / 𝑥𝐵))
1713, 15, 16cbvrex 3307 . . 3 (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵)
1817abbii 2877 . 2 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵}
1912, 18syl6eleqr 2850 1 (𝑥𝐴𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wtru 1633  wcel 2139  {cab 2746  wrex 3051  Vcvv 3340  csb 3674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-v 3342  df-sbc 3577  df-csb 3675
This theorem is referenced by:  eusvobj2  6807  lss1d  19185  prdsxmetlem  22394  prdsbl  22517  itg2monolem1  23736  heibor1  33940  dihglblem5  37107
  Copyright terms: Public domain W3C validator