Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elabgt Structured version   Visualization version   GIF version

Theorem elabgt 3379
 Description: Membership in a class abstraction, using implicit substitution. (Closed theorem version of elabg 3383.) (Contributed by NM, 7-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
elabgt ((𝐴𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elabgt
StepHypRef Expression
1 nfcv 2793 . . 3 𝑥𝐴
2 nfab1 2795 . . . . 5 𝑥{𝑥𝜑}
32nfel2 2810 . . . 4 𝑥 𝐴 ∈ {𝑥𝜑}
4 nfv 1883 . . . 4 𝑥𝜓
53, 4nfbi 1873 . . 3 𝑥(𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
6 pm5.5 350 . . 3 (𝑥 = 𝐴 → ((𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)) ↔ (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
71, 5, 6spcgf 3319 . 2 (𝐴𝐵 → (∀𝑥(𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
8 abid 2639 . . . . . . 7 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
9 eleq1 2718 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑥𝜑}))
108, 9syl5bbr 274 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝐴 ∈ {𝑥𝜑}))
1110bibi1d 332 . . . . 5 (𝑥 = 𝐴 → ((𝜑𝜓) ↔ (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
1211biimpd 219 . . . 4 (𝑥 = 𝐴 → ((𝜑𝜓) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
1312a2i 14 . . 3 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
1413alimi 1779 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝑥 = 𝐴 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
157, 14impel 484 1 ((𝐴𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383  ∀wal 1521   = wceq 1523   ∈ wcel 2030  {cab 2637 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-v 3233 This theorem is referenced by:  elrab3t  3395  dfrtrcl2  13846  abfmpeld  29582  abfmpel  29583  dftrcl3  38329  dfrtrcl3  38342
 Copyright terms: Public domain W3C validator