![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elabgt | Structured version Visualization version GIF version |
Description: Membership in a class abstraction, using implicit substitution. (Closed theorem version of elabg 3383.) (Contributed by NM, 7-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
elabgt | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2793 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | nfab1 2795 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
3 | 2 | nfel2 2810 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ {𝑥 ∣ 𝜑} |
4 | nfv 1883 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
5 | 3, 4 | nfbi 1873 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
6 | pm5.5 350 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) ↔ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) | |
7 | 1, 5, 6 | spcgf 3319 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) |
8 | abid 2639 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
9 | eleq1 2718 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
10 | 8, 9 | syl5bbr 274 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) |
11 | 10 | bibi1d 332 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) |
12 | 11 | biimpd 219 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) |
13 | 12 | a2i 14 | . . 3 ⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝑥 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) |
14 | 13 | alimi 1779 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → ∀𝑥(𝑥 = 𝐴 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) |
15 | 7, 14 | impel 484 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1521 = wceq 1523 ∈ wcel 2030 {cab 2637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 |
This theorem is referenced by: elrab3t 3395 dfrtrcl2 13846 abfmpeld 29582 abfmpel 29583 dftrcl3 38329 dfrtrcl3 38342 |
Copyright terms: Public domain | W3C validator |