MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elabd Structured version   Visualization version   GIF version

Theorem elabd 3346
Description: Explicit demonstration the class {𝑥𝜓} is not empty by the example 𝑋. (Contributed by RP, 12-Aug-2020.)
Hypotheses
Ref Expression
elab.xex (𝜑𝑋 ∈ V)
elab.xmaj (𝜑𝜒)
elab.xsub (𝑥 = 𝑋 → (𝜓𝜒))
Assertion
Ref Expression
elabd (𝜑 → ∃𝑥𝜓)
Distinct variable groups:   𝜒,𝑥   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem elabd
StepHypRef Expression
1 elab.xex . 2 (𝜑𝑋 ∈ V)
2 elab.xmaj . 2 (𝜑𝜒)
3 elab.xsub . . 3 (𝑥 = 𝑋 → (𝜓𝜒))
43spcegv 3289 . 2 (𝑋 ∈ V → (𝜒 → ∃𝑥𝜓))
51, 2, 4sylc 65 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1481  wex 1702  wcel 1988  Vcvv 3195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-v 3197
This theorem is referenced by:  hasheqf1od  13127  setsexstruct2  15878  wwlksnextbij  26778  clrellem  37748  clcnvlem  37749  uspgrsprfo  41521  uspgrbispr  41524
  Copyright terms: Public domain W3C validator