Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elab4g Structured version   Visualization version   GIF version

Theorem elab4g 3506
 Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 17-Oct-2012.)
Hypotheses
Ref Expression
elab4g.1 (𝑥 = 𝐴 → (𝜑𝜓))
elab4g.2 𝐵 = {𝑥𝜑}
Assertion
Ref Expression
elab4g (𝐴𝐵 ↔ (𝐴 ∈ V ∧ 𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elab4g
StepHypRef Expression
1 elex 3364 . 2 (𝐴𝐵𝐴 ∈ V)
2 elab4g.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
3 elab4g.2 . . 3 𝐵 = {𝑥𝜑}
42, 3elab2g 3504 . 2 (𝐴 ∈ V → (𝐴𝐵𝜓))
51, 4biadan2 819 1 (𝐴𝐵 ↔ (𝐴 ∈ V ∧ 𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631   ∈ wcel 2145  {cab 2757  Vcvv 3351 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-v 3353 This theorem is referenced by:  isprs  17138  ispos  17155  istrkgc  25574  istrkgb  25575  istrkgcb  25576  istrkge  25577  istrkgl  25578  eulerpartlemt0  30771  istrkg2d  31084
 Copyright terms: Public domain W3C validator