![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elab3 | Structured version Visualization version GIF version |
Description: Membership in a class abstraction using implicit substitution. (Contributed by NM, 10-Nov-2000.) |
Ref | Expression |
---|---|
elab3.1 | ⊢ (𝜓 → 𝐴 ∈ V) |
elab3.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elab3 | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab3.1 | . 2 ⊢ (𝜓 → 𝐴 ∈ V) | |
2 | elab3.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | elab3g 3497 | . 2 ⊢ ((𝜓 → 𝐴 ∈ V) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2139 {cab 2746 Vcvv 3340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 |
This theorem is referenced by: fvelrnb 6405 elrnmpt2 6938 ovelrn 6975 isfi 8145 isnum2 8961 pm54.43lem 9015 isfin3 9310 isfin5 9313 isfin6 9314 genpelv 10014 iswrd 13493 4sqlem2 15855 vdwapval 15879 isghm 17861 issrng 19052 lspsnel 19205 lspprel 19296 iscss 20229 ellspd 20343 istps 20940 islp 21146 is2ndc 21451 elpt 21577 itg2l 23695 elply 24150 isismt 25628 isline 35528 ispointN 35531 ispsubsp 35534 ispsubclN 35726 islaut 35872 ispautN 35888 istendo 36550 rngunsnply 38245 |
Copyright terms: Public domain | W3C validator |