![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elaa | Structured version Visualization version GIF version |
Description: Elementhood in the set of algebraic numbers. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
elaa | ⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-aa 24115 | . . 3 ⊢ 𝔸 = ∪ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(◡𝑓 “ {0}) | |
2 | 1 | eleq2i 2722 | . 2 ⊢ (𝐴 ∈ 𝔸 ↔ 𝐴 ∈ ∪ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(◡𝑓 “ {0})) |
3 | eliun 4556 | . . 3 ⊢ (𝐴 ∈ ∪ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(◡𝑓 “ {0}) ↔ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})𝐴 ∈ (◡𝑓 “ {0})) | |
4 | eldifi 3765 | . . . . . 6 ⊢ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑓 ∈ (Poly‘ℤ)) | |
5 | plyf 23999 | . . . . . 6 ⊢ (𝑓 ∈ (Poly‘ℤ) → 𝑓:ℂ⟶ℂ) | |
6 | ffn 6083 | . . . . . 6 ⊢ (𝑓:ℂ⟶ℂ → 𝑓 Fn ℂ) | |
7 | fniniseg 6378 | . . . . . 6 ⊢ (𝑓 Fn ℂ → (𝐴 ∈ (◡𝑓 “ {0}) ↔ (𝐴 ∈ ℂ ∧ (𝑓‘𝐴) = 0))) | |
8 | 4, 5, 6, 7 | 4syl 19 | . . . . 5 ⊢ (𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → (𝐴 ∈ (◡𝑓 “ {0}) ↔ (𝐴 ∈ ℂ ∧ (𝑓‘𝐴) = 0))) |
9 | 8 | rexbiia 3069 | . . . 4 ⊢ (∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})𝐴 ∈ (◡𝑓 “ {0}) ↔ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝐴 ∈ ℂ ∧ (𝑓‘𝐴) = 0)) |
10 | r19.42v 3121 | . . . 4 ⊢ (∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝐴 ∈ ℂ ∧ (𝑓‘𝐴) = 0) ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) | |
11 | 9, 10 | bitri 264 | . . 3 ⊢ (∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})𝐴 ∈ (◡𝑓 “ {0}) ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) |
12 | 3, 11 | bitri 264 | . 2 ⊢ (𝐴 ∈ ∪ 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(◡𝑓 “ {0}) ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) |
13 | 2, 12 | bitri 264 | 1 ⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 ∖ cdif 3604 {csn 4210 ∪ ciun 4552 ◡ccnv 5142 “ cima 5146 Fn wfn 5921 ⟶wf 5922 ‘cfv 5926 ℂcc 9972 0cc0 9974 ℤcz 11415 0𝑝c0p 23481 Polycply 23985 𝔸caa 24114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-fz 12365 df-fzo 12505 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-sum 14461 df-ply 23989 df-aa 24115 |
This theorem is referenced by: aacn 24117 elqaalem3 24121 elqaa 24122 iaa 24125 aareccl 24126 aacjcl 24127 aannenlem2 24129 aaliou2 24140 elaa2 40769 |
Copyright terms: Public domain | W3C validator |