Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigposi Structured version   Visualization version   GIF version

Theorem eigposi 29004
 Description: A sufficient condition (first conjunct pair, that holds when 𝑇 is a positive operator) for an eigenvalue 𝐵 (second conjunct pair) to be nonnegative. Remark (ii) in [Hughes] p. 137. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
eigpos.1 𝐴 ∈ ℋ
eigpos.2 𝐵 ∈ ℂ
Assertion
Ref Expression
eigposi ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))

Proof of Theorem eigposi
StepHypRef Expression
1 oveq2 6821 . . . . . . . 8 ((𝑇𝐴) = (𝐵 · 𝐴) → (𝐴 ·ih (𝑇𝐴)) = (𝐴 ·ih (𝐵 · 𝐴)))
21eleq1d 2824 . . . . . . 7 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝐵 · 𝐴)) ∈ ℝ))
3 oveq1 6820 . . . . . . . . 9 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝑇𝐴) ·ih 𝐴) = ((𝐵 · 𝐴) ·ih 𝐴))
41, 3eqeq12d 2775 . . . . . . . 8 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ (𝐴 ·ih (𝐵 · 𝐴)) = ((𝐵 · 𝐴) ·ih 𝐴)))
5 eigpos.1 . . . . . . . . 9 𝐴 ∈ ℋ
6 eigpos.2 . . . . . . . . . 10 𝐵 ∈ ℂ
76, 5hvmulcli 28180 . . . . . . . . 9 (𝐵 · 𝐴) ∈ ℋ
8 hire 28260 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ (𝐵 · 𝐴) ∈ ℋ) → ((𝐴 ·ih (𝐵 · 𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝐵 · 𝐴)) = ((𝐵 · 𝐴) ·ih 𝐴)))
95, 7, 8mp2an 710 . . . . . . . 8 ((𝐴 ·ih (𝐵 · 𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝐵 · 𝐴)) = ((𝐵 · 𝐴) ·ih 𝐴))
104, 9syl6rbbr 279 . . . . . . 7 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝐴 ·ih (𝐵 · 𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴)))
112, 10bitrd 268 . . . . . 6 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴)))
1211adantr 472 . . . . 5 (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ↔ (𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴)))
135, 6eigrei 29002 . . . . 5 (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ))
1412, 13bitrd 268 . . . 4 (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ↔ 𝐵 ∈ ℝ))
1514biimpac 504 . . 3 (((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 𝐵 ∈ ℝ)
1615adantlr 753 . 2 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 𝐵 ∈ ℝ)
17 ax-his4 28251 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (𝐴 ·ih 𝐴))
185, 17mpan 708 . . . 4 (𝐴 ≠ 0 → 0 < (𝐴 ·ih 𝐴))
1918ad2antll 767 . . 3 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 0 < (𝐴 ·ih 𝐴))
20 simplr 809 . . . 4 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 0 ≤ (𝐴 ·ih (𝑇𝐴)))
211ad2antrl 766 . . . . 5 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐴 ·ih (𝑇𝐴)) = (𝐴 ·ih (𝐵 · 𝐴)))
22 his5 28252 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ·ih (𝐵 · 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴)))
236, 5, 5, 22mp3an 1573 . . . . . 6 (𝐴 ·ih (𝐵 · 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴))
2416cjred 14165 . . . . . . 7 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (∗‘𝐵) = 𝐵)
2524oveq1d 6828 . . . . . 6 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → ((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)))
2623, 25syl5eq 2806 . . . . 5 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐴 ·ih (𝐵 · 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)))
2721, 26eqtrd 2794 . . . 4 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐴 ·ih (𝑇𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)))
2820, 27breqtrd 4830 . . 3 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 0 ≤ (𝐵 · (𝐴 ·ih 𝐴)))
29 hiidrcl 28261 . . . . 5 (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ)
305, 29ax-mp 5 . . . 4 (𝐴 ·ih 𝐴) ∈ ℝ
31 prodge02 11063 . . . 4 (((𝐵 ∈ ℝ ∧ (𝐴 ·ih 𝐴) ∈ ℝ) ∧ (0 < (𝐴 ·ih 𝐴) ∧ 0 ≤ (𝐵 · (𝐴 ·ih 𝐴)))) → 0 ≤ 𝐵)
3230, 31mpanl2 719 . . 3 ((𝐵 ∈ ℝ ∧ (0 < (𝐴 ·ih 𝐴) ∧ 0 ≤ (𝐵 · (𝐴 ·ih 𝐴)))) → 0 ≤ 𝐵)
3316, 19, 28, 32syl12anc 1475 . 2 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → 0 ≤ 𝐵)
3416, 33jca 555 1 ((((𝐴 ·ih (𝑇𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇𝐴))) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ≠ wne 2932   class class class wbr 4804  ‘cfv 6049  (class class class)co 6813  ℂcc 10126  ℝcr 10127  0cc0 10128   · cmul 10133   < clt 10266   ≤ cle 10267  ∗ccj 14035   ℋchil 28085   ·ℎ csm 28087   ·ih csp 28088  0ℎc0v 28090 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-hfvmul 28171  ax-hfi 28245  ax-his1 28248  ax-his3 28250  ax-his4 28251 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-2 11271  df-cj 14038  df-re 14039  df-im 14040 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator