MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ege2le3 Structured version   Visualization version   GIF version

Theorem ege2le3 14801
Description: Lemma for egt2lt3 14915. (Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
Hypotheses
Ref Expression
erelem1.1 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛)))
erelem1.2 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
Assertion
Ref Expression
ege2le3 (2 ≤ e ∧ e ≤ 3)

Proof of Theorem ege2le3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 11707 . . . . . 6 0 = (ℤ‘0)
2 0nn0 11292 . . . . . 6 0 ∈ ℕ0
3 1e0p1 11537 . . . . . 6 1 = (0 + 1)
4 0z 11373 . . . . . . 7 0 ∈ ℤ
5 fveq2 6178 . . . . . . . . . . . 12 (𝑛 = 0 → (!‘𝑛) = (!‘0))
6 fac0 13046 . . . . . . . . . . . 12 (!‘0) = 1
75, 6syl6eq 2670 . . . . . . . . . . 11 (𝑛 = 0 → (!‘𝑛) = 1)
87oveq2d 6651 . . . . . . . . . 10 (𝑛 = 0 → (1 / (!‘𝑛)) = (1 / 1))
9 ax-1cn 9979 . . . . . . . . . . 11 1 ∈ ℂ
109div1i 10738 . . . . . . . . . 10 (1 / 1) = 1
118, 10syl6eq 2670 . . . . . . . . 9 (𝑛 = 0 → (1 / (!‘𝑛)) = 1)
12 erelem1.2 . . . . . . . . 9 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
13 1ex 10020 . . . . . . . . 9 1 ∈ V
1411, 12, 13fvmpt 6269 . . . . . . . 8 (0 ∈ ℕ0 → (𝐺‘0) = 1)
152, 14mp1i 13 . . . . . . 7 (⊤ → (𝐺‘0) = 1)
164, 15seq1i 12798 . . . . . 6 (⊤ → (seq0( + , 𝐺)‘0) = 1)
17 1nn0 11293 . . . . . . 7 1 ∈ ℕ0
18 fveq2 6178 . . . . . . . . . . 11 (𝑛 = 1 → (!‘𝑛) = (!‘1))
19 fac1 13047 . . . . . . . . . . 11 (!‘1) = 1
2018, 19syl6eq 2670 . . . . . . . . . 10 (𝑛 = 1 → (!‘𝑛) = 1)
2120oveq2d 6651 . . . . . . . . 9 (𝑛 = 1 → (1 / (!‘𝑛)) = (1 / 1))
2221, 10syl6eq 2670 . . . . . . . 8 (𝑛 = 1 → (1 / (!‘𝑛)) = 1)
2322, 12, 13fvmpt 6269 . . . . . . 7 (1 ∈ ℕ0 → (𝐺‘1) = 1)
2417, 23mp1i 13 . . . . . 6 (⊤ → (𝐺‘1) = 1)
251, 2, 3, 16, 24seqp1i 12800 . . . . 5 (⊤ → (seq0( + , 𝐺)‘1) = (1 + 1))
26 df-2 11064 . . . . 5 2 = (1 + 1)
2725, 26syl6eqr 2672 . . . 4 (⊤ → (seq0( + , 𝐺)‘1) = 2)
2817a1i 11 . . . . 5 (⊤ → 1 ∈ ℕ0)
29 nn0z 11385 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
30 1exp 12872 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
3129, 30syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
3231oveq1d 6650 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ((1↑𝑛) / (!‘𝑛)) = (1 / (!‘𝑛)))
3332mpteq2ia 4731 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
3412, 33eqtr4i 2645 . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛)))
3534efcvg 14796 . . . . . . 7 (1 ∈ ℂ → seq0( + , 𝐺) ⇝ (exp‘1))
369, 35mp1i 13 . . . . . 6 (⊤ → seq0( + , 𝐺) ⇝ (exp‘1))
37 df-e 14780 . . . . . 6 e = (exp‘1)
3836, 37syl6breqr 4686 . . . . 5 (⊤ → seq0( + , 𝐺) ⇝ e)
39 fveq2 6178 . . . . . . . . 9 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
4039oveq2d 6651 . . . . . . . 8 (𝑛 = 𝑘 → (1 / (!‘𝑛)) = (1 / (!‘𝑘)))
41 ovex 6663 . . . . . . . 8 (1 / (!‘𝑘)) ∈ V
4240, 12, 41fvmpt 6269 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝐺𝑘) = (1 / (!‘𝑘)))
4342adantl 482 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = (1 / (!‘𝑘)))
44 faccl 13053 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
4544adantl 482 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
4645nnrecred 11051 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ∈ ℝ)
4743, 46eqeltrd 2699 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℝ)
4845nnred 11020 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ)
4945nngt0d 11049 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 < (!‘𝑘))
50 1re 10024 . . . . . . . 8 1 ∈ ℝ
51 0le1 10536 . . . . . . . 8 0 ≤ 1
52 divge0 10877 . . . . . . . 8 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → 0 ≤ (1 / (!‘𝑘)))
5350, 51, 52mpanl12 717 . . . . . . 7 (((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘)) → 0 ≤ (1 / (!‘𝑘)))
5448, 49, 53syl2anc 692 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 ≤ (1 / (!‘𝑘)))
5554, 43breqtrrd 4672 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 ≤ (𝐺𝑘))
561, 28, 38, 47, 55climserle 14374 . . . 4 (⊤ → (seq0( + , 𝐺)‘1) ≤ e)
5727, 56eqbrtrrd 4668 . . 3 (⊤ → 2 ≤ e)
5857trud 1491 . 2 2 ≤ e
59 nnuz 11708 . . . . . 6 ℕ = (ℤ‘1)
60 1zzd 11393 . . . . . 6 (⊤ → 1 ∈ ℤ)
612a1i 11 . . . . . . . 8 (⊤ → 0 ∈ ℕ0)
6247recnd 10053 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
631, 61, 62, 38clim2ser 14366 . . . . . . 7 (⊤ → seq(0 + 1)( + , 𝐺) ⇝ (e − (seq0( + , 𝐺)‘0)))
64 0p1e1 11117 . . . . . . . 8 (0 + 1) = 1
65 seqeq1 12787 . . . . . . . 8 ((0 + 1) = 1 → seq(0 + 1)( + , 𝐺) = seq1( + , 𝐺))
6664, 65ax-mp 5 . . . . . . 7 seq(0 + 1)( + , 𝐺) = seq1( + , 𝐺)
6716trud 1491 . . . . . . . 8 (seq0( + , 𝐺)‘0) = 1
6867oveq2i 6646 . . . . . . 7 (e − (seq0( + , 𝐺)‘0)) = (e − 1)
6963, 66, 683brtr3g 4677 . . . . . 6 (⊤ → seq1( + , 𝐺) ⇝ (e − 1))
70 2cnd 11078 . . . . . . . 8 (⊤ → 2 ∈ ℂ)
71 oveq2 6643 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((1 / 2)↑𝑛) = ((1 / 2)↑𝑘))
72 eqid 2620 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))
73 ovex 6663 . . . . . . . . . . . . 13 ((1 / 2)↑𝑘) ∈ V
7471, 72, 73fvmpt 6269 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
7574adantl 482 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
76 halfre 11231 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
77 simpr 477 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
78 reexpcl 12860 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℝ)
7976, 77, 78sylancr 694 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℝ)
8079recnd 10053 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℂ)
8175, 80eqeltrd 2699 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) ∈ ℂ)
82 1lt2 11179 . . . . . . . . . . . . . 14 1 < 2
83 2re 11075 . . . . . . . . . . . . . . 15 2 ∈ ℝ
84 0le2 11096 . . . . . . . . . . . . . . 15 0 ≤ 2
85 absid 14017 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
8683, 84, 85mp2an 707 . . . . . . . . . . . . . 14 (abs‘2) = 2
8782, 86breqtrri 4671 . . . . . . . . . . . . 13 1 < (abs‘2)
8887a1i 11 . . . . . . . . . . . 12 (⊤ → 1 < (abs‘2))
8970, 88, 75georeclim 14584 . . . . . . . . . . 11 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ (2 / (2 − 1)))
90 2m1e1 11120 . . . . . . . . . . . . 13 (2 − 1) = 1
9190oveq2i 6646 . . . . . . . . . . . 12 (2 / (2 − 1)) = (2 / 1)
92 2cn 11076 . . . . . . . . . . . . 13 2 ∈ ℂ
9392div1i 10738 . . . . . . . . . . . 12 (2 / 1) = 2
9491, 93eqtri 2642 . . . . . . . . . . 11 (2 / (2 − 1)) = 2
9589, 94syl6breq 4685 . . . . . . . . . 10 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ 2)
961, 61, 81, 95clim2ser 14366 . . . . . . . . 9 (⊤ → seq(0 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ (2 − (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)))
97 seqeq1 12787 . . . . . . . . . 10 ((0 + 1) = 1 → seq(0 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) = seq1( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))))
9864, 97ax-mp 5 . . . . . . . . 9 seq(0 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) = seq1( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))
99 oveq2 6643 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → ((1 / 2)↑𝑛) = ((1 / 2)↑0))
100 ovex 6663 . . . . . . . . . . . . . . . . 17 ((1 / 2)↑0) ∈ V
10199, 72, 100fvmpt 6269 . . . . . . . . . . . . . . . 16 (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = ((1 / 2)↑0))
1022, 101ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = ((1 / 2)↑0)
103 halfcn 11232 . . . . . . . . . . . . . . . 16 (1 / 2) ∈ ℂ
104 exp0 12847 . . . . . . . . . . . . . . . 16 ((1 / 2) ∈ ℂ → ((1 / 2)↑0) = 1)
105103, 104ax-mp 5 . . . . . . . . . . . . . . 15 ((1 / 2)↑0) = 1
106102, 105eqtri 2642 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = 1
107106a1i 11 . . . . . . . . . . . . 13 (⊤ → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = 1)
1084, 107seq1i 12798 . . . . . . . . . . . 12 (⊤ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0) = 1)
109108trud 1491 . . . . . . . . . . 11 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0) = 1
110109oveq2i 6646 . . . . . . . . . 10 (2 − (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)) = (2 − 1)
111110, 90eqtri 2642 . . . . . . . . 9 (2 − (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)) = 1
11296, 98, 1113brtr3g 4677 . . . . . . . 8 (⊤ → seq1( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ 1)
113 nnnn0 11284 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
114113, 81sylan2 491 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) ∈ ℂ)
11571oveq2d 6651 . . . . . . . . . . 11 (𝑛 = 𝑘 → (2 · ((1 / 2)↑𝑛)) = (2 · ((1 / 2)↑𝑘)))
116 erelem1.1 . . . . . . . . . . 11 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛)))
117 ovex 6663 . . . . . . . . . . 11 (2 · ((1 / 2)↑𝑘)) ∈ V
118115, 116, 117fvmpt 6269 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐹𝑘) = (2 · ((1 / 2)↑𝑘)))
119118adantl 482 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (2 · ((1 / 2)↑𝑘)))
120113, 75sylan2 491 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
121120oveq2d 6651 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘)) = (2 · ((1 / 2)↑𝑘)))
122119, 121eqtr4d 2657 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (2 · ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘)))
12359, 60, 70, 112, 114, 122isermulc2 14369 . . . . . . 7 (⊤ → seq1( + , 𝐹) ⇝ (2 · 1))
124 2t1e2 11161 . . . . . . 7 (2 · 1) = 2
125123, 124syl6breq 4685 . . . . . 6 (⊤ → seq1( + , 𝐹) ⇝ 2)
126113, 47sylan2 491 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
127 remulcl 10006 . . . . . . . . 9 ((2 ∈ ℝ ∧ ((1 / 2)↑𝑘) ∈ ℝ) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ)
12883, 79, 127sylancr 694 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ)
129113, 128sylan2 491 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ)
130119, 129eqeltrd 2699 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
131 faclbnd2 13061 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((2↑𝑘) / 2) ≤ (!‘𝑘))
132131adantl 482 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2↑𝑘) / 2) ≤ (!‘𝑘))
133 2nn 11170 . . . . . . . . . . . . . 14 2 ∈ ℕ
134 nnexpcl 12856 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
135133, 77, 134sylancr 694 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
136135nnrpd 11855 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℝ+)
137136rphalfcld 11869 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2↑𝑘) / 2) ∈ ℝ+)
13845nnrpd 11855 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+)
139137, 138lerecd 11876 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (((2↑𝑘) / 2) ≤ (!‘𝑘) ↔ (1 / (!‘𝑘)) ≤ (1 / ((2↑𝑘) / 2))))
140132, 139mpbid 222 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ≤ (1 / ((2↑𝑘) / 2)))
141 2cnd 11078 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → 2 ∈ ℂ)
142135nncnd 11021 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℂ)
143135nnne0d 11050 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ≠ 0)
144141, 142, 143divrecd 10789 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 / (2↑𝑘)) = (2 · (1 / (2↑𝑘))))
145 2ne0 11098 . . . . . . . . . . . 12 2 ≠ 0
146 recdiv 10716 . . . . . . . . . . . 12 ((((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (1 / ((2↑𝑘) / 2)) = (2 / (2↑𝑘)))
14792, 145, 146mpanr12 720 . . . . . . . . . . 11 (((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → (1 / ((2↑𝑘) / 2)) = (2 / (2↑𝑘)))
148142, 143, 147syl2anc 692 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / ((2↑𝑘) / 2)) = (2 / (2↑𝑘)))
149145a1i 11 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → 2 ≠ 0)
150 nn0z 11385 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
151150adantl 482 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
152141, 149, 151exprecd 12999 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) = (1 / (2↑𝑘)))
153152oveq2d 6651 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) = (2 · (1 / (2↑𝑘))))
154144, 148, 1533eqtr4rd 2665 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) = (1 / ((2↑𝑘) / 2)))
155140, 154breqtrrd 4672 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ≤ (2 · ((1 / 2)↑𝑘)))
156113, 155sylan2 491 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (!‘𝑘)) ≤ (2 · ((1 / 2)↑𝑘)))
157113, 43sylan2 491 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) = (1 / (!‘𝑘)))
158156, 157, 1193brtr4d 4676 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐹𝑘))
15959, 60, 69, 125, 126, 130, 158iserle 14371 . . . . 5 (⊤ → (e − 1) ≤ 2)
160159trud 1491 . . . 4 (e − 1) ≤ 2
161 ere 14800 . . . . 5 e ∈ ℝ
162161, 50, 83lesubaddi 10571 . . . 4 ((e − 1) ≤ 2 ↔ e ≤ (2 + 1))
163160, 162mpbi 220 . . 3 e ≤ (2 + 1)
164 df-3 11065 . . 3 3 = (2 + 1)
165163, 164breqtrri 4671 . 2 e ≤ 3
16658, 165pm3.2i 471 1 (2 ≤ e ∧ e ≤ 3)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1481  wtru 1482  wcel 1988  wne 2791   class class class wbr 4644  cmpt 4720  cfv 5876  (class class class)co 6635  cc 9919  cr 9920  0cc0 9921  1c1 9922   + caddc 9924   · cmul 9926   < clt 10059  cle 10060  cmin 10251   / cdiv 10669  cn 11005  2c2 11055  3c3 11056  0cn0 11277  cz 11362  seqcseq 12784  cexp 12843  !cfa 13043  abscabs 13955  cli 14196  expce 14773  eceu 14774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-pm 7845  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-n0 11278  df-z 11363  df-uz 11673  df-rp 11818  df-ico 12166  df-fz 12312  df-fzo 12450  df-fl 12576  df-seq 12785  df-exp 12844  df-fac 13044  df-hash 13101  df-shft 13788  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-limsup 14183  df-clim 14200  df-rlim 14201  df-sum 14398  df-ef 14779  df-e 14780
This theorem is referenced by:  egt2lt3  14915
  Copyright terms: Public domain W3C validator