MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efrlim Structured version   Visualization version   GIF version

Theorem efrlim 24891
Description: The limit of the sequence (1 + 𝐴 / 𝑘)↑𝑘 is the exponential function. This is often taken as an alternate definition of the exponential function (see also dfef2 24892). (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypothesis
Ref Expression
efrlim.1 𝑆 = (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1)))
Assertion
Ref Expression
efrlim (𝐴 ∈ ℂ → (𝑘 ∈ ℝ+ ↦ ((1 + (𝐴 / 𝑘))↑𝑐𝑘)) ⇝𝑟 (exp‘𝐴))
Distinct variable group:   𝐴,𝑘
Allowed substitution hint:   𝑆(𝑘)

Proof of Theorem efrlim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rge0ssre 12469 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
2 ax-resscn 10181 . . . . . . . 8 ℝ ⊆ ℂ
31, 2sstri 3749 . . . . . . 7 (0[,)+∞) ⊆ ℂ
43sseli 3736 . . . . . 6 (𝑥 ∈ (0[,)+∞) → 𝑥 ∈ ℂ)
5 simpll 807 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → 𝐴 ∈ ℂ)
6 1cnd 10244 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → 1 ∈ ℂ)
7 simplr 809 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → 𝑥 ∈ ℂ)
8 ax-1ne0 10193 . . . . . . . . . . . 12 1 ≠ 0
98a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → 1 ≠ 0)
10 simpr 479 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → ¬ 𝑥 = 0)
1110neqned 2935 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → 𝑥 ≠ 0)
125, 6, 7, 9, 11divdiv2d 11021 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (𝐴 / (1 / 𝑥)) = ((𝐴 · 𝑥) / 1))
13 mulcl 10208 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ)
1413adantr 472 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (𝐴 · 𝑥) ∈ ℂ)
1514div1d 10981 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → ((𝐴 · 𝑥) / 1) = (𝐴 · 𝑥))
1612, 15eqtrd 2790 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (𝐴 / (1 / 𝑥)) = (𝐴 · 𝑥))
1716oveq2d 6825 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (1 + (𝐴 / (1 / 𝑥))) = (1 + (𝐴 · 𝑥)))
1817oveq1d 6824 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)) = ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))
1918ifeq2da 4257 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥))) = if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))))
204, 19sylan2 492 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ (0[,)+∞)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥))) = if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))))
2120mpteq2dva 4892 . . . 4 (𝐴 ∈ ℂ → (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))) = (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))))
22 resmpt 5603 . . . . 5 ((0[,)+∞) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))))
233, 22ax-mp 5 . . . 4 ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))))
2421, 23syl6eqr 2808 . . 3 (𝐴 ∈ ℂ → (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))) = ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞)))
253a1i 11 . . . 4 (𝐴 ∈ ℂ → (0[,)+∞) ⊆ ℂ)
26 0e0icopnf 12471 . . . . 5 0 ∈ (0[,)+∞)
2726a1i 11 . . . 4 (𝐴 ∈ ℂ → 0 ∈ (0[,)+∞))
28 eqeq2 2767 . . . . . . . . 9 ((exp‘(𝐴 · 1)) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) → (if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · 1)) ↔ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))))
29 eqeq2 2767 . . . . . . . . 9 ((exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) → (if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) ↔ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))))
30 efrlim.1 . . . . . . . . . . . . . 14 𝑆 = (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1)))
31 cnxmet 22773 . . . . . . . . . . . . . . . 16 (abs ∘ − ) ∈ (∞Met‘ℂ)
3231a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (abs ∘ − ) ∈ (∞Met‘ℂ))
33 0cnd 10221 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 0 ∈ ℂ)
34 abscl 14213 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
35 peano2re 10397 . . . . . . . . . . . . . . . . . . 19 ((abs‘𝐴) ∈ ℝ → ((abs‘𝐴) + 1) ∈ ℝ)
3634, 35syl 17 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → ((abs‘𝐴) + 1) ∈ ℝ)
37 0red 10229 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → 0 ∈ ℝ)
38 absge0 14222 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
3934ltp1d 11142 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → (abs‘𝐴) < ((abs‘𝐴) + 1))
4037, 34, 36, 38, 39lelttrd 10383 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℂ → 0 < ((abs‘𝐴) + 1))
4136, 40elrpd 12058 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → ((abs‘𝐴) + 1) ∈ ℝ+)
4241rpreccld 12071 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (1 / ((abs‘𝐴) + 1)) ∈ ℝ+)
4342rpxrd 12062 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (1 / ((abs‘𝐴) + 1)) ∈ ℝ*)
44 blssm 22420 . . . . . . . . . . . . . . 15 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (1 / ((abs‘𝐴) + 1)) ∈ ℝ*) → (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ⊆ ℂ)
4532, 33, 43, 44syl3anc 1477 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ⊆ ℂ)
4630, 45syl5eqss 3786 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → 𝑆 ⊆ ℂ)
4746sselda 3740 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 𝑥 ∈ ℂ)
48 mul0or 10855 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐴 · 𝑥) = 0 ↔ (𝐴 = 0 ∨ 𝑥 = 0)))
4947, 48syldan 488 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((𝐴 · 𝑥) = 0 ↔ (𝐴 = 0 ∨ 𝑥 = 0)))
5049biimpa 502 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 · 𝑥) = 0) → (𝐴 = 0 ∨ 𝑥 = 0))
51 simpl 474 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 𝐴 ∈ ℂ)
5251, 47jca 555 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ))
537, 11reccld 10982 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (1 / 𝑥) ∈ ℂ)
5452, 53sylan 489 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ 𝑥 = 0) → (1 / 𝑥) ∈ ℂ)
5554adantlr 753 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (1 / 𝑥) ∈ ℂ)
56551cxpd 24648 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (1↑𝑐(1 / 𝑥)) = 1)
57 simplr 809 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → 𝐴 = 0)
5857oveq1d 6824 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (𝐴 · 𝑥) = (0 · 𝑥))
5947ad2antrr 764 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → 𝑥 ∈ ℂ)
6059mul02d 10422 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (0 · 𝑥) = 0)
6158, 60eqtrd 2790 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (𝐴 · 𝑥) = 0)
6261oveq2d 6825 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (1 + (𝐴 · 𝑥)) = (1 + 0))
63 1p0e1 11321 . . . . . . . . . . . . . . . . 17 (1 + 0) = 1
6462, 63syl6eq 2806 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (1 + (𝐴 · 𝑥)) = 1)
6564oveq1d 6824 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)) = (1↑𝑐(1 / 𝑥)))
6657fveq2d 6352 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (exp‘𝐴) = (exp‘0))
67 ef0 15016 . . . . . . . . . . . . . . . 16 (exp‘0) = 1
6866, 67syl6eq 2806 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → (exp‘𝐴) = 1)
6956, 65, 683eqtr4d 2800 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) ∧ ¬ 𝑥 = 0) → ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)) = (exp‘𝐴))
7069ifeq2da 4257 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = if(𝑥 = 0, (exp‘𝐴), (exp‘𝐴)))
71 ifid 4265 . . . . . . . . . . . . 13 if(𝑥 = 0, (exp‘𝐴), (exp‘𝐴)) = (exp‘𝐴)
7270, 71syl6eq 2806 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝐴 = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘𝐴))
73 iftrue 4232 . . . . . . . . . . . . 13 (𝑥 = 0 → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘𝐴))
7473adantl 473 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ 𝑥 = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘𝐴))
7572, 74jaodan 861 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 = 0 ∨ 𝑥 = 0)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘𝐴))
76 mulid1 10225 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
7776ad2antrr 764 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 = 0 ∨ 𝑥 = 0)) → (𝐴 · 1) = 𝐴)
7877fveq2d 6352 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 = 0 ∨ 𝑥 = 0)) → (exp‘(𝐴 · 1)) = (exp‘𝐴))
7975, 78eqtr4d 2793 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 = 0 ∨ 𝑥 = 0)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · 1)))
8050, 79syldan 488 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 · 𝑥) = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · 1)))
81 mulne0b 10856 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐴 ≠ 0 ∧ 𝑥 ≠ 0) ↔ (𝐴 · 𝑥) ≠ 0))
8247, 81syldan 488 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((𝐴 ≠ 0 ∧ 𝑥 ≠ 0) ↔ (𝐴 · 𝑥) ≠ 0))
83 df-ne 2929 . . . . . . . . . . . 12 ((𝐴 · 𝑥) ≠ 0 ↔ ¬ (𝐴 · 𝑥) = 0)
8482, 83syl6bb 276 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((𝐴 ≠ 0 ∧ 𝑥 ≠ 0) ↔ ¬ (𝐴 · 𝑥) = 0))
85 simprr 813 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → 𝑥 ≠ 0)
8685neneqd 2933 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ¬ 𝑥 = 0)
8786iffalsed 4237 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))
88 ax-1cn 10182 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
8947, 13syldan 488 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝐴 · 𝑥) ∈ ℂ)
90 addcl 10206 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (𝐴 · 𝑥) ∈ ℂ) → (1 + (𝐴 · 𝑥)) ∈ ℂ)
9188, 89, 90sylancr 698 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (1 + (𝐴 · 𝑥)) ∈ ℂ)
9291adantr 472 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (1 + (𝐴 · 𝑥)) ∈ ℂ)
93 eqid 2756 . . . . . . . . . . . . . . . . . . 19 (1(ball‘(abs ∘ − ))1) = (1(ball‘(abs ∘ − ))1)
9493dvlog2lem 24593 . . . . . . . . . . . . . . . . . 18 (1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖ (-∞(,]0))
95 eqid 2756 . . . . . . . . . . . . . . . . . . 19 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
9695logdmss 24583 . . . . . . . . . . . . . . . . . 18 (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖ {0})
9794, 96sstri 3749 . . . . . . . . . . . . . . . . 17 (1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖ {0})
98 eqid 2756 . . . . . . . . . . . . . . . . . . . . . 22 (abs ∘ − ) = (abs ∘ − )
9998cnmetdval 22771 . . . . . . . . . . . . . . . . . . . . 21 (((1 + (𝐴 · 𝑥)) ∈ ℂ ∧ 1 ∈ ℂ) → ((1 + (𝐴 · 𝑥))(abs ∘ − )1) = (abs‘((1 + (𝐴 · 𝑥)) − 1)))
10091, 88, 99sylancl 697 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥))(abs ∘ − )1) = (abs‘((1 + (𝐴 · 𝑥)) − 1)))
101 pncan2 10476 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℂ ∧ (𝐴 · 𝑥) ∈ ℂ) → ((1 + (𝐴 · 𝑥)) − 1) = (𝐴 · 𝑥))
10288, 89, 101sylancr 698 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥)) − 1) = (𝐴 · 𝑥))
103102fveq2d 6352 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘((1 + (𝐴 · 𝑥)) − 1)) = (abs‘(𝐴 · 𝑥)))
104100, 103eqtrd 2790 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥))(abs ∘ − )1) = (abs‘(𝐴 · 𝑥)))
10589abscld 14370 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘(𝐴 · 𝑥)) ∈ ℝ)
10636adantr 472 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((abs‘𝐴) + 1) ∈ ℝ)
10747abscld 14370 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘𝑥) ∈ ℝ)
108106, 107remulcld 10258 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (((abs‘𝐴) + 1) · (abs‘𝑥)) ∈ ℝ)
109 1red 10243 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 1 ∈ ℝ)
110 absmul 14229 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (abs‘(𝐴 · 𝑥)) = ((abs‘𝐴) · (abs‘𝑥)))
11147, 110syldan 488 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘(𝐴 · 𝑥)) = ((abs‘𝐴) · (abs‘𝑥)))
11234adantr 472 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘𝐴) ∈ ℝ)
113112, 35syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((abs‘𝐴) + 1) ∈ ℝ)
11447absge0d 14378 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 0 ≤ (abs‘𝑥))
115112lep1d 11143 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘𝐴) ≤ ((abs‘𝐴) + 1))
116112, 113, 107, 114, 115lemul1ad 11151 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((abs‘𝐴) · (abs‘𝑥)) ≤ (((abs‘𝐴) + 1) · (abs‘𝑥)))
117111, 116eqbrtrd 4822 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘(𝐴 · 𝑥)) ≤ (((abs‘𝐴) + 1) · (abs‘𝑥)))
118 0cn 10220 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ ℂ
11998cnmetdval 22771 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑥(abs ∘ − )0) = (abs‘(𝑥 − 0)))
12047, 118, 119sylancl 697 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝑥(abs ∘ − )0) = (abs‘(𝑥 − 0)))
12147subid1d 10569 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝑥 − 0) = 𝑥)
122121fveq2d 6352 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘(𝑥 − 0)) = (abs‘𝑥))
123120, 122eqtrd 2790 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝑥(abs ∘ − )0) = (abs‘𝑥))
124 simpr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 𝑥𝑆)
125124, 30syl6eleq 2845 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 𝑥 ∈ (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))))
12631a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs ∘ − ) ∈ (∞Met‘ℂ))
12743adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (1 / ((abs‘𝐴) + 1)) ∈ ℝ*)
128 0cnd 10221 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 0 ∈ ℂ)
129 elbl3 22394 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (1 / ((abs‘𝐴) + 1)) ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ↔ (𝑥(abs ∘ − )0) < (1 / ((abs‘𝐴) + 1))))
130126, 127, 128, 47, 129syl22anc 1478 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝑥 ∈ (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ↔ (𝑥(abs ∘ − )0) < (1 / ((abs‘𝐴) + 1))))
131125, 130mpbid 222 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (𝑥(abs ∘ − )0) < (1 / ((abs‘𝐴) + 1)))
132123, 131eqbrtrrd 4824 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘𝑥) < (1 / ((abs‘𝐴) + 1)))
13340adantr 472 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 0 < ((abs‘𝐴) + 1))
134 ltmuldiv2 11085 . . . . . . . . . . . . . . . . . . . . . 22 (((abs‘𝑥) ∈ ℝ ∧ 1 ∈ ℝ ∧ (((abs‘𝐴) + 1) ∈ ℝ ∧ 0 < ((abs‘𝐴) + 1))) → ((((abs‘𝐴) + 1) · (abs‘𝑥)) < 1 ↔ (abs‘𝑥) < (1 / ((abs‘𝐴) + 1))))
135107, 109, 113, 133, 134syl112anc 1481 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((((abs‘𝐴) + 1) · (abs‘𝑥)) < 1 ↔ (abs‘𝑥) < (1 / ((abs‘𝐴) + 1))))
136132, 135mpbird 247 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (((abs‘𝐴) + 1) · (abs‘𝑥)) < 1)
137105, 108, 109, 117, 136lelttrd 10383 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (abs‘(𝐴 · 𝑥)) < 1)
138104, 137eqbrtrd 4822 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥))(abs ∘ − )1) < 1)
139 1rp 12025 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ+
140 rpxr 12029 . . . . . . . . . . . . . . . . . . . 20 (1 ∈ ℝ+ → 1 ∈ ℝ*)
141139, 140mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 1 ∈ ℝ*)
142 1cnd 10244 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → 1 ∈ ℂ)
143 elbl3 22394 . . . . . . . . . . . . . . . . . . 19 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (1 ∈ ℂ ∧ (1 + (𝐴 · 𝑥)) ∈ ℂ)) → ((1 + (𝐴 · 𝑥)) ∈ (1(ball‘(abs ∘ − ))1) ↔ ((1 + (𝐴 · 𝑥))(abs ∘ − )1) < 1))
144126, 141, 142, 91, 143syl22anc 1478 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥)) ∈ (1(ball‘(abs ∘ − ))1) ↔ ((1 + (𝐴 · 𝑥))(abs ∘ − )1) < 1))
145138, 144mpbird 247 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (1 + (𝐴 · 𝑥)) ∈ (1(ball‘(abs ∘ − ))1))
14697, 145sseldi 3738 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (1 + (𝐴 · 𝑥)) ∈ (ℂ ∖ {0}))
147 eldifsni 4462 . . . . . . . . . . . . . . . 16 ((1 + (𝐴 · 𝑥)) ∈ (ℂ ∖ {0}) → (1 + (𝐴 · 𝑥)) ≠ 0)
148146, 147syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (1 + (𝐴 · 𝑥)) ≠ 0)
149148adantr 472 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (1 + (𝐴 · 𝑥)) ≠ 0)
15047adantr 472 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → 𝑥 ∈ ℂ)
151150, 85reccld 10982 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ ℂ)
15292, 149, 151cxpefd 24653 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)) = (exp‘((1 / 𝑥) · (log‘(1 + (𝐴 · 𝑥))))))
15391, 148logcld 24512 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (log‘(1 + (𝐴 · 𝑥))) ∈ ℂ)
154153adantr 472 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (log‘(1 + (𝐴 · 𝑥))) ∈ ℂ)
155151, 154mulcomd 10249 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((1 / 𝑥) · (log‘(1 + (𝐴 · 𝑥)))) = ((log‘(1 + (𝐴 · 𝑥))) · (1 / 𝑥)))
156 simpll 807 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → 𝐴 ∈ ℂ)
157 simprl 811 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → 𝐴 ≠ 0)
158156, 157dividd 10987 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (𝐴 / 𝐴) = 1)
159158oveq1d 6824 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((𝐴 / 𝐴) / 𝑥) = (1 / 𝑥))
160156, 156, 150, 157, 85divdiv1d 11020 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((𝐴 / 𝐴) / 𝑥) = (𝐴 / (𝐴 · 𝑥)))
161159, 160eqtr3d 2792 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) = (𝐴 / (𝐴 · 𝑥)))
162161oveq2d 6825 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((log‘(1 + (𝐴 · 𝑥))) · (1 / 𝑥)) = ((log‘(1 + (𝐴 · 𝑥))) · (𝐴 / (𝐴 · 𝑥))))
16389adantr 472 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (𝐴 · 𝑥) ∈ ℂ)
16482biimpa 502 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (𝐴 · 𝑥) ≠ 0)
165154, 156, 163, 164div12d 11025 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((log‘(1 + (𝐴 · 𝑥))) · (𝐴 / (𝐴 · 𝑥))) = (𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))
166155, 162, 1653eqtrd 2794 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → ((1 / 𝑥) · (log‘(1 + (𝐴 · 𝑥)))) = (𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))
167166fveq2d 6352 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → (exp‘((1 / 𝑥) · (log‘(1 + (𝐴 · 𝑥))))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
16887, 152, 1673eqtrd 2794 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 ≠ 0 ∧ 𝑥 ≠ 0)) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
169168ex 449 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((𝐴 ≠ 0 ∧ 𝑥 ≠ 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
17084, 169sylbird 250 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → (¬ (𝐴 · 𝑥) = 0 → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
171170imp 444 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
17228, 29, 80, 171ifbothda 4263 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
173172mpteq2dva 4892 . . . . . . 7 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) = (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))))
17446resmptd 5606 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) = (𝑥𝑆 ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))))
175 1cnd 10244 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ (𝐴 · 𝑥) = 0) → 1 ∈ ℂ)
176153adantr 472 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → (log‘(1 + (𝐴 · 𝑥))) ∈ ℂ)
17789adantr 472 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → (𝐴 · 𝑥) ∈ ℂ)
178 simpr 479 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → ¬ (𝐴 · 𝑥) = 0)
179178neqned 2935 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → (𝐴 · 𝑥) ≠ 0)
180176, 177, 179divcld 10989 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥𝑆) ∧ ¬ (𝐴 · 𝑥) = 0) → ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)) ∈ ℂ)
181175, 180ifclda 4260 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) ∈ ℂ)
182 eqidd 2757 . . . . . . . 8 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) = (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
183 eqidd 2757 . . . . . . . 8 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))))
184 oveq2 6817 . . . . . . . . . 10 (𝑦 = if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) → (𝐴 · 𝑦) = (𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
185184fveq2d 6352 . . . . . . . . 9 (𝑦 = if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
186 oveq2 6817 . . . . . . . . . . 11 (if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) = 1 → (𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) = (𝐴 · 1))
187186fveq2d 6352 . . . . . . . . . 10 (if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) = 1 → (exp‘(𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) = (exp‘(𝐴 · 1)))
188 oveq2 6817 . . . . . . . . . . 11 (if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) = ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)) → (𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) = (𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))
189188fveq2d 6352 . . . . . . . . . 10 (if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) = ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)) → (exp‘(𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) = (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
190187, 189ifsb 4239 . . . . . . . . 9 (exp‘(𝐴 · if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
191185, 190syl6eq 2806 . . . . . . . 8 (𝑦 = if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))) → (exp‘(𝐴 · 𝑦)) = if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
192181, 182, 183, 191fmptco 6555 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∘ (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) = (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, (exp‘(𝐴 · 1)), (exp‘(𝐴 · ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))))
193173, 174, 1923eqtr4d 2800 . . . . . 6 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) = ((𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∘ (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))))
194 eqidd 2757 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) = (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))))
195 eqidd 2757 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) = (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))))
196 eqeq1 2760 . . . . . . . . . . 11 (𝑦 = (1 + (𝐴 · 𝑥)) → (𝑦 = 1 ↔ (1 + (𝐴 · 𝑥)) = 1))
197 fveq2 6348 . . . . . . . . . . . 12 (𝑦 = (1 + (𝐴 · 𝑥)) → (log‘𝑦) = (log‘(1 + (𝐴 · 𝑥))))
198 oveq1 6816 . . . . . . . . . . . 12 (𝑦 = (1 + (𝐴 · 𝑥)) → (𝑦 − 1) = ((1 + (𝐴 · 𝑥)) − 1))
199197, 198oveq12d 6827 . . . . . . . . . . 11 (𝑦 = (1 + (𝐴 · 𝑥)) → ((log‘𝑦) / (𝑦 − 1)) = ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1)))
200196, 199ifbieq2d 4251 . . . . . . . . . 10 (𝑦 = (1 + (𝐴 · 𝑥)) → if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1))) = if((1 + (𝐴 · 𝑥)) = 1, 1, ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1))))
201145, 194, 195, 200fmptco 6555 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∘ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))) = (𝑥𝑆 ↦ if((1 + (𝐴 · 𝑥)) = 1, 1, ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1)))))
20263eqeq2i 2768 . . . . . . . . . . . 12 ((1 + (𝐴 · 𝑥)) = (1 + 0) ↔ (1 + (𝐴 · 𝑥)) = 1)
203142, 89, 128addcand 10427 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥)) = (1 + 0) ↔ (𝐴 · 𝑥) = 0))
204202, 203syl5bbr 274 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((1 + (𝐴 · 𝑥)) = 1 ↔ (𝐴 · 𝑥) = 0))
205102oveq2d 6825 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1)) = ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))
206204, 205ifbieq2d 4251 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥𝑆) → if((1 + (𝐴 · 𝑥)) = 1, 1, ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1))) = if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))
207206mpteq2dva 4892 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ if((1 + (𝐴 · 𝑥)) = 1, 1, ((log‘(1 + (𝐴 · 𝑥))) / ((1 + (𝐴 · 𝑥)) − 1)))) = (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
208201, 207eqtrd 2790 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∘ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))) = (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))))
209 eqid 2756 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
210 eqid 2756 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
211210cnfldtopon 22783 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
212211a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
213 1cnd 10244 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → 1 ∈ ℂ)
214212, 212, 213cnmptc 21663 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ 1) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
215 id 22 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
216212, 212, 215cnmptc 21663 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ 𝐴) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
217212cnmptid 21662 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ 𝑥) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
218210mulcn 22867 . . . . . . . . . . . . . . 15 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
219218a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
220212, 216, 217, 219cnmpt12f 21667 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
221210addcn 22865 . . . . . . . . . . . . . 14 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
222221a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
223212, 214, 220, 222cnmpt12f 21667 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (1 + (𝐴 · 𝑥))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
224209, 212, 46, 223cnmpt1res 21677 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)))
225 eqid 2756 . . . . . . . . . . . . . 14 (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) = (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))
226145, 225fmptd 6544 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))):𝑆⟶(1(ball‘(abs ∘ − ))1))
227 frn 6210 . . . . . . . . . . . . 13 ((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))):𝑆⟶(1(ball‘(abs ∘ − ))1) → ran (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ⊆ (1(ball‘(abs ∘ − ))1))
228226, 227syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ran (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ⊆ (1(ball‘(abs ∘ − ))1))
229 difss 3876 . . . . . . . . . . . . . 14 (ℂ ∖ {0}) ⊆ ℂ
23097, 229sstri 3749 . . . . . . . . . . . . 13 (1(ball‘(abs ∘ − ))1) ⊆ ℂ
231230a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (1(ball‘(abs ∘ − ))1) ⊆ ℂ)
232 cnrest2 21288 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ⊆ (1(ball‘(abs ∘ − ))1) ∧ (1(ball‘(abs ∘ − ))1) ⊆ ℂ) → ((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)))))
233212, 228, 231, 232syl3anc 1477 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn (TopOpen‘ℂfld)) ↔ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)))))
234224, 233mpbid 222 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1))))
235 blcntr 22415 . . . . . . . . . . . . 13 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (1 / ((abs‘𝐴) + 1)) ∈ ℝ+) → 0 ∈ (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))))
23632, 33, 42, 235syl3anc 1477 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → 0 ∈ (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))))
237236, 30syl6eleqr 2846 . . . . . . . . . . 11 (𝐴 ∈ ℂ → 0 ∈ 𝑆)
238 resttopon 21163 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
239211, 46, 238sylancr 698 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆))
240 toponuni 20917 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
241239, 240syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℂ → 𝑆 = ((TopOpen‘ℂfld) ↾t 𝑆))
242237, 241eleqtrd 2837 . . . . . . . . . 10 (𝐴 ∈ ℂ → 0 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
243 eqid 2756 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
244243cncnpi 21280 . . . . . . . . . 10 (((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ (((TopOpen‘ℂfld) ↾t 𝑆) Cn ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1))) ∧ 0 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)))‘0))
245234, 242, 244syl2anc 696 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)))‘0))
246 cnelprrecn 10217 . . . . . . . . . . 11 ℂ ∈ {ℝ, ℂ}
247 logf1o 24506 . . . . . . . . . . . . . 14 log:(ℂ ∖ {0})–1-1-onto→ran log
248 f1of 6294 . . . . . . . . . . . . . 14 (log:(ℂ ∖ {0})–1-1-onto→ran log → log:(ℂ ∖ {0})⟶ran log)
249247, 248ax-mp 5 . . . . . . . . . . . . 13 log:(ℂ ∖ {0})⟶ran log
250 logrncn 24504 . . . . . . . . . . . . . 14 (𝑥 ∈ ran log → 𝑥 ∈ ℂ)
251250ssriv 3744 . . . . . . . . . . . . 13 ran log ⊆ ℂ
252 fss 6213 . . . . . . . . . . . . 13 ((log:(ℂ ∖ {0})⟶ran log ∧ ran log ⊆ ℂ) → log:(ℂ ∖ {0})⟶ℂ)
253249, 251, 252mp2an 710 . . . . . . . . . . . 12 log:(ℂ ∖ {0})⟶ℂ
254 fssres 6227 . . . . . . . . . . . 12 ((log:(ℂ ∖ {0})⟶ℂ ∧ (1(ball‘(abs ∘ − ))1) ⊆ (ℂ ∖ {0})) → (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ − ))1)⟶ℂ)
255253, 97, 254mp2an 710 . . . . . . . . . . 11 (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ − ))1)⟶ℂ
256 blcntr 22415 . . . . . . . . . . . . . 14 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ+) → 1 ∈ (1(ball‘(abs ∘ − ))1))
25731, 88, 139, 256mp3an 1569 . . . . . . . . . . . . 13 1 ∈ (1(ball‘(abs ∘ − ))1)
258 ovex 6837 . . . . . . . . . . . . . 14 (1 / 𝑦) ∈ V
25993dvlog2 24594 . . . . . . . . . . . . . 14 (ℂ D (log ↾ (1(ball‘(abs ∘ − ))1))) = (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦))
260258, 259dmmpti 6180 . . . . . . . . . . . . 13 dom (ℂ D (log ↾ (1(ball‘(abs ∘ − ))1))) = (1(ball‘(abs ∘ − ))1)
261257, 260eleqtrri 2834 . . . . . . . . . . . 12 1 ∈ dom (ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))
262 eqid 2756 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) = ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1))
263259fveq1i 6349 . . . . . . . . . . . . . . . . 17 ((ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))‘1) = ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦))‘1)
264 oveq2 6817 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 1 → (1 / 𝑦) = (1 / 1))
265 1div1e1 10905 . . . . . . . . . . . . . . . . . . . 20 (1 / 1) = 1
266264, 265syl6eq 2806 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 1 → (1 / 𝑦) = 1)
267 eqid 2756 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦)) = (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦))
268 1ex 10223 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
269266, 267, 268fvmpt 6440 . . . . . . . . . . . . . . . . . 18 (1 ∈ (1(ball‘(abs ∘ − ))1) → ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦))‘1) = 1)
270257, 269ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ (1 / 𝑦))‘1) = 1
271263, 270eqtr2i 2779 . . . . . . . . . . . . . . . 16 1 = ((ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))‘1)
272271a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → 1 = ((ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))‘1))
273 fvres 6364 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → ((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) = (log‘𝑦))
274 fvres 6364 . . . . . . . . . . . . . . . . . . . 20 (1 ∈ (1(ball‘(abs ∘ − ))1) → ((log ↾ (1(ball‘(abs ∘ − ))1))‘1) = (log‘1))
275257, 274mp1i 13 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → ((log ↾ (1(ball‘(abs ∘ − ))1))‘1) = (log‘1))
276 log1 24527 . . . . . . . . . . . . . . . . . . 19 (log‘1) = 0
277275, 276syl6eq 2806 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → ((log ↾ (1(ball‘(abs ∘ − ))1))‘1) = 0)
278273, 277oveq12d 6827 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → (((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) − ((log ↾ (1(ball‘(abs ∘ − ))1))‘1)) = ((log‘𝑦) − 0))
27997sseli 3736 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → 𝑦 ∈ (ℂ ∖ {0}))
280 eldifsn 4458 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
281279, 280sylib 208 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
282 logcl 24510 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (log‘𝑦) ∈ ℂ)
283281, 282syl 17 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → (log‘𝑦) ∈ ℂ)
284283subid1d 10569 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → ((log‘𝑦) − 0) = (log‘𝑦))
285278, 284eqtr2d 2791 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → (log‘𝑦) = (((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) − ((log ↾ (1(ball‘(abs ∘ − ))1))‘1)))
286285oveq1d 6824 . . . . . . . . . . . . . . 15 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → ((log‘𝑦) / (𝑦 − 1)) = ((((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) − ((log ↾ (1(ball‘(abs ∘ − ))1))‘1)) / (𝑦 − 1)))
287272, 286ifeq12d 4246 . . . . . . . . . . . . . 14 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) → if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1))) = if(𝑦 = 1, ((ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))‘1), ((((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) − ((log ↾ (1(ball‘(abs ∘ − ))1))‘1)) / (𝑦 − 1))))
288287mpteq2ia 4888 . . . . . . . . . . . . 13 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) = (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, ((ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))‘1), ((((log ↾ (1(ball‘(abs ∘ − ))1))‘𝑦) − ((log ↾ (1(ball‘(abs ∘ − ))1))‘1)) / (𝑦 − 1))))
289262, 210, 288dvcnp 23877 . . . . . . . . . . . 12 (((ℂ ∈ {ℝ, ℂ} ∧ (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ − ))1)⟶ℂ ∧ (1(ball‘(abs ∘ − ))1) ⊆ ℂ) ∧ 1 ∈ dom (ℂ D (log ↾ (1(ball‘(abs ∘ − ))1)))) → (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈ ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘1))
290261, 289mpan2 709 . . . . . . . . . . 11 ((ℂ ∈ {ℝ, ℂ} ∧ (log ↾ (1(ball‘(abs ∘ − ))1)):(1(ball‘(abs ∘ − ))1)⟶ℂ ∧ (1(ball‘(abs ∘ − ))1) ⊆ ℂ) → (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈ ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘1))
291246, 255, 230, 290mp3an 1569 . . . . . . . . . 10 (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈ ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘1)
292 oveq2 6817 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (𝐴 · 𝑥) = (𝐴 · 0))
293292oveq2d 6825 . . . . . . . . . . . . . 14 (𝑥 = 0 → (1 + (𝐴 · 𝑥)) = (1 + (𝐴 · 0)))
294 ovex 6837 . . . . . . . . . . . . . 14 (1 + (𝐴 · 0)) ∈ V
295293, 225, 294fvmpt 6440 . . . . . . . . . . . . 13 (0 ∈ 𝑆 → ((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0) = (1 + (𝐴 · 0)))
296237, 295syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0) = (1 + (𝐴 · 0)))
297 mul01 10403 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
298297oveq2d 6825 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (1 + (𝐴 · 0)) = (1 + 0))
299298, 63syl6eq 2806 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (1 + (𝐴 · 0)) = 1)
300296, 299eqtrd 2790 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0) = 1)
301300fveq2d 6352 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0)) = ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘1))
302291, 301syl5eleqr 2842 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈ ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0)))
303 cnpco 21269 . . . . . . . . 9 (((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP ((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)))‘0) ∧ (𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∈ ((((TopOpen‘ℂfld) ↾t (1(ball‘(abs ∘ − ))1)) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))‘0))) → ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∘ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
304245, 302, 303syl2anc 696 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝑦 ∈ (1(ball‘(abs ∘ − ))1) ↦ if(𝑦 = 1, 1, ((log‘𝑦) / (𝑦 − 1)))) ∘ (𝑥𝑆 ↦ (1 + (𝐴 · 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
305208, 304eqeltrrd 2836 . . . . . . 7 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
306212, 212, 215cnmptc 21663 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ 𝐴) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
307212cnmptid 21662 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ 𝑦) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
308212, 306, 307, 219cnmpt12f 21667 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
309 efcn 24392 . . . . . . . . . . 11 exp ∈ (ℂ–cn→ℂ)
310210cncfcn1 22910 . . . . . . . . . . 11 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
311309, 310eleqtri 2833 . . . . . . . . . 10 exp ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
312311a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → exp ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
313212, 308, 312cnmpt11f 21665 . . . . . . . 8 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
314 eqid 2756 . . . . . . . . . 10 (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) = (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))
315181, 314fmptd 6544 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))):𝑆⟶ℂ)
316315, 237ffvelrnd 6519 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0) ∈ ℂ)
317211toponunii 20919 . . . . . . . . 9 ℂ = (TopOpen‘ℂfld)
318317cncnpi 21280 . . . . . . . 8 (((𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ ((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0) ∈ ℂ) → (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0)))
319313, 316, 318syl2anc 696 . . . . . . 7 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0)))
320 cnpco 21269 . . . . . . 7 (((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0) ∧ (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘((𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))‘0))) → ((𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∘ (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
321305, 319, 320syl2anc 696 . . . . . 6 (𝐴 ∈ ℂ → ((𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦))) ∘ (𝑥𝑆 ↦ if((𝐴 · 𝑥) = 0, 1, ((log‘(1 + (𝐴 · 𝑥))) / (𝐴 · 𝑥))))) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
322193, 321eqeltrd 2835 . . . . 5 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0))
323210cnfldtop 22784 . . . . . . 7 (TopOpen‘ℂfld) ∈ Top
324323a1i 11 . . . . . 6 (𝐴 ∈ ℂ → (TopOpen‘ℂfld) ∈ Top)
325210cnfldtopn 22782 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
326325blopn 22502 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ (1 / ((abs‘𝐴) + 1)) ∈ ℝ*) → (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ∈ (TopOpen‘ℂfld))
32732, 33, 43, 326syl3anc 1477 . . . . . . . . 9 (𝐴 ∈ ℂ → (0(ball‘(abs ∘ − ))(1 / ((abs‘𝐴) + 1))) ∈ (TopOpen‘ℂfld))
32830, 327syl5eqel 2839 . . . . . . . 8 (𝐴 ∈ ℂ → 𝑆 ∈ (TopOpen‘ℂfld))
329 isopn3i 21084 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘𝑆) = 𝑆)
330323, 328, 329sylancr 698 . . . . . . 7 (𝐴 ∈ ℂ → ((int‘(TopOpen‘ℂfld))‘𝑆) = 𝑆)
331237, 330eleqtrrd 2838 . . . . . 6 (𝐴 ∈ ℂ → 0 ∈ ((int‘(TopOpen‘ℂfld))‘𝑆))
332 efcl 15008 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
333332ad2antrr 764 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ 𝑥 = 0) → (exp‘𝐴) ∈ ℂ)
33488, 14, 90sylancr 698 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → (1 + (𝐴 · 𝑥)) ∈ ℂ)
335334, 53cxpcld 24649 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ ¬ 𝑥 = 0) → ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)) ∈ ℂ)
336333, 335ifclda 4260 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))) ∈ ℂ)
337 eqid 2756 . . . . . . 7 (𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) = (𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥))))
338336, 337fmptd 6544 . . . . . 6 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))):ℂ⟶ℂ)
339317, 317cnprest 21291 . . . . . 6 ((((TopOpen‘ℂfld) ∈ Top ∧ 𝑆 ⊆ ℂ) ∧ (0 ∈ ((int‘(TopOpen‘ℂfld))‘𝑆) ∧ (𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))):ℂ⟶ℂ)) → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘0) ↔ ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0)))
340324, 46, 331, 338, 339syl22anc 1478 . . . . 5 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘0) ↔ ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ 𝑆) ∈ ((((TopOpen‘ℂfld) ↾t 𝑆) CnP (TopOpen‘ℂfld))‘0)))
341322, 340mpbird 247 . . . 4 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘0))
342317cnpresti 21290 . . . 4 (((0[,)+∞) ⊆ ℂ ∧ 0 ∈ (0[,)+∞) ∧ (𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘0)) → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞)) ∈ ((((TopOpen‘ℂfld) ↾t (0[,)+∞)) CnP (TopOpen‘ℂfld))‘0))
34325, 27, 341, 342syl3anc 1477 . . 3 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 · 𝑥))↑𝑐(1 / 𝑥)))) ↾ (0[,)+∞)) ∈ ((((TopOpen‘ℂfld) ↾t (0[,)+∞)) CnP (TopOpen‘ℂfld))‘0))
34424, 343eqeltrd 2835 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t (0[,)+∞)) CnP (TopOpen‘ℂfld))‘0))
345 simpl 474 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → 𝐴 ∈ ℂ)
346 rpcn 12030 . . . . . . 7 (𝑘 ∈ ℝ+𝑘 ∈ ℂ)
347346adantl 473 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → 𝑘 ∈ ℂ)
348 rpne0 12037 . . . . . . 7 (𝑘 ∈ ℝ+𝑘 ≠ 0)
349348adantl 473 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → 𝑘 ≠ 0)
350345, 347, 349divcld 10989 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → (𝐴 / 𝑘) ∈ ℂ)
351 addcl 10206 . . . . 5 ((1 ∈ ℂ ∧ (𝐴 / 𝑘) ∈ ℂ) → (1 + (𝐴 / 𝑘)) ∈ ℂ)
35288, 350, 351sylancr 698 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → (1 + (𝐴 / 𝑘)) ∈ ℂ)
353352, 347cxpcld 24649 . . 3 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℝ+) → ((1 + (𝐴 / 𝑘))↑𝑐𝑘) ∈ ℂ)
354 oveq2 6817 . . . . 5 (𝑘 = (1 / 𝑥) → (𝐴 / 𝑘) = (𝐴 / (1 / 𝑥)))
355354oveq2d 6825 . . . 4 (𝑘 = (1 / 𝑥) → (1 + (𝐴 / 𝑘)) = (1 + (𝐴 / (1 / 𝑥))))
356 id 22 . . . 4 (𝑘 = (1 / 𝑥) → 𝑘 = (1 / 𝑥))
357355, 356oveq12d 6827 . . 3 (𝑘 = (1 / 𝑥) → ((1 + (𝐴 / 𝑘))↑𝑐𝑘) = ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))
358 eqid 2756 . . 3 ((TopOpen‘ℂfld) ↾t (0[,)+∞)) = ((TopOpen‘ℂfld) ↾t (0[,)+∞))
359332, 353, 357, 210, 358rlimcnp3 24889 . 2 (𝐴 ∈ ℂ → ((𝑘 ∈ ℝ+ ↦ ((1 + (𝐴 / 𝑘))↑𝑐𝑘)) ⇝𝑟 (exp‘𝐴) ↔ (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, (exp‘𝐴), ((1 + (𝐴 / (1 / 𝑥)))↑𝑐(1 / 𝑥)))) ∈ ((((TopOpen‘ℂfld) ↾t (0[,)+∞)) CnP (TopOpen‘ℂfld))‘0)))
360344, 359mpbird 247 1 (𝐴 ∈ ℂ → (𝑘 ∈ ℝ+ ↦ ((1 + (𝐴 / 𝑘))↑𝑐𝑘)) ⇝𝑟 (exp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1628  wcel 2135  wne 2928  cdif 3708  wss 3711  ifcif 4226  {csn 4317  {cpr 4319   cuni 4584   class class class wbr 4800  cmpt 4877  dom cdm 5262  ran crn 5263  cres 5264  ccom 5266  wf 6041  1-1-ontowf1o 6044  cfv 6045  (class class class)co 6809  cc 10122  cr 10123  0cc0 10124  1c1 10125   + caddc 10127   · cmul 10129  +∞cpnf 10259  -∞cmnf 10260  *cxr 10261   < clt 10262  cle 10263  cmin 10454   / cdiv 10872  +crp 12021  (,]cioc 12365  [,)cico 12366  abscabs 14169  𝑟 crli 14411  expce 14987  t crest 16279  TopOpenctopn 16280  ∞Metcxmt 19929  ballcbl 19931  fldccnfld 19944  Topctop 20896  TopOnctopon 20913  intcnt 21019   Cn ccn 21226   CnP ccnp 21227   ×t ctx 21561  cnccncf 22876   D cdv 23822  logclog 24496  𝑐ccxp 24497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-inf2 8707  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201  ax-pre-sup 10202  ax-addf 10203  ax-mulf 10204
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-fal 1634  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-iin 4671  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-se 5222  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-isom 6054  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-of 7058  df-om 7227  df-1st 7329  df-2nd 7330  df-supp 7460  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-2o 7726  df-oadd 7729  df-er 7907  df-map 8021  df-pm 8022  df-ixp 8071  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-fsupp 8437  df-fi 8478  df-sup 8509  df-inf 8510  df-oi 8576  df-card 8951  df-cda 9178  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-div 10873  df-nn 11209  df-2 11267  df-3 11268  df-4 11269  df-5 11270  df-6 11271  df-7 11272  df-8 11273  df-9 11274  df-n0 11481  df-z 11566  df-dec 11682  df-uz 11876  df-q 11978  df-rp 12022  df-xneg 12135  df-xadd 12136  df-xmul 12137  df-ioo 12368  df-ioc 12369  df-ico 12370  df-icc 12371  df-fz 12516  df-fzo 12656  df-fl 12783  df-mod 12859  df-seq 12992  df-exp 13051  df-fac 13251  df-bc 13280  df-hash 13308  df-shft 14002  df-cj 14034  df-re 14035  df-im 14036  df-sqrt 14170  df-abs 14171  df-limsup 14397  df-clim 14414  df-rlim 14415  df-sum 14612  df-ef 14993  df-sin 14995  df-cos 14996  df-tan 14997  df-pi 14998  df-struct 16057  df-ndx 16058  df-slot 16059  df-base 16061  df-sets 16062  df-ress 16063  df-plusg 16152  df-mulr 16153  df-starv 16154  df-sca 16155  df-vsca 16156  df-ip 16157  df-tset 16158  df-ple 16159  df-ds 16162  df-unif 16163  df-hom 16164  df-cco 16165  df-rest 16281  df-topn 16282  df-0g 16300  df-gsum 16301  df-topgen 16302  df-pt 16303  df-prds 16306  df-xrs 16360  df-qtop 16365  df-imas 16366  df-xps 16368  df-mre 16444  df-mrc 16445  df-acs 16447  df-mgm 17439  df-sgrp 17481  df-mnd 17492  df-submnd 17533  df-mulg 17738  df-cntz 17946  df-cmn 18391  df-psmet 19936  df-xmet 19937  df-met 19938  df-bl 19939  df-mopn 19940  df-fbas 19941  df-fg 19942  df-cnfld 19945  df-top 20897  df-topon 20914  df-topsp 20935  df-bases 20948  df-cld 21021  df-ntr 21022  df-cls 21023  df-nei 21100  df-lp 21138  df-perf 21139  df-cn 21229  df-cnp 21230  df-haus 21317  df-cmp 21388  df-tx 21563  df-hmeo 21756  df-fil 21847  df-fm 21939  df-flim 21940  df-flf 21941  df-xms 22322  df-ms 22323  df-tms 22324  df-cncf 22878  df-limc 23825  df-dv 23826  df-log 24498  df-cxp 24499
This theorem is referenced by:  dfef2  24892
  Copyright terms: Public domain W3C validator